decode

D3.2 Data access -
and transaction
management
module

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no. 732546

decode
__

Project no. 732546

DECODE

DEcentralised Citizens Owned Data Ecosystem

D.3.2 Data access and transaction management module
Version Number: 1.0.1

Lead beneficiary: Thingful

Due Date: August 2017

Author(s): Mark deVilliers (Thingful)

Editors and reviewers: Jim Barritt (Thoughtworks) and Japp-Henk Hoepman (RU)

Dissemination level:

PU | Public X

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission

Services)

CO | Confidential, only for members of the consortium (including the Commission

Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City
Hall)

Date: 28/08/2107

This report is currently awaiting approval from the EC and cannot be not considered to be a

final version.

H2020-ICT-2016-1 DECODE D3.2

-1 -

decode
——

Contents
INMEFOTUCTION et eeeessssss e esssss s Rt -3-
ADOUL N8 SOFEWAIE c.oovi ettt ssssss s -4 -
Data ENtitlEMENT ... ssssssssons -4 -
ATCIIEECTUTE o eeessess st -5-
@] a]we] [ole1[ot=] M aaT=]])1 qlc OO -8-
NOETES ... s st e -9-
Building and RUNNING ... -9-
WVAIK ENFOUGN ..o sss s ee e essnnne -12 -
H2020-ICT-2016-1 DECODE D.3.2

-2 -

decode
__

Introduction

The proposal describes the deliverable for 3.2 as :
D3.2 Data access and transaction management module (M8)

An early stage prototype working demonstrator which is capable of: private IoT data search,
entitlement match, decentralized data access and transaction enablement.

The deliverable for 3.2 takes the form of a software repository.

The address for the repository is - https://gogs.dyne.org/DECODE/decode-prototype-da

H2020-ICT-2016-1 DECODE D3.2

-3 -

https://gogs.dyne.org/DECODE/decode-prototype-da

decode

About the software

The following is adapted from the file https://gogs.dyne.org/DECODE/decode-prototype-
da/src/master/README.md

This repository contains an early stage prototype working demonstrator which is capable of:
- retaining private loT data
- search of private IOT data

- demonstrating an implementation of data entitlement specifically around the visibility and
access of private |oT data

- decentralized data access of private |oT data

The architectural context for the prototype is based around the discussions in the first 6 months
of the DECODE project (https://decodeprojecteu/) by the technical partners including
Thoughtworks (https://www.thoughtworks.com/), Dyne (https://www.dyne.org/),
UCL(http://sec.cs.uclac.uk/home/) and thingful (https://www.thingful.net).

The purpose of the prototype is to demonstrate some of the concepts from the DECODE project
grounded in an loT use-case.

Data Entitlement

An introduction to concepts of data entitlements as well as a review of prior art was completed
as part of the DECODE project.

From the review:

Data entitlements could be thought of as an evolution of a traditional authorization scheme
specialized for the securing of both personal, business and IoT data. Giving the data owner full
control of the access and discovery of their data creates a system of empowerment whose
currency is privacy...The relationship of privacy and data entitlement is subject to many nuances.
Users might allow a party to search and access their data, but only under the understanding
that they will not be personally identified or only under specific circumstances. For example,
a driver of a motor vehicle with an on-board camera might want to entitle the emergency
services access to his data when there is a road traffic accident. However, the driver might not
want to be identified as being in a certain geographical area or that he was exceeding the speed
limit at the time. Data,when available, can directly or indirectly compromise privacy in a way
that would surprise a user.

The full document, D3.1 Survey of Technologies for ABC, Entitlements and Blockchains, can be
found here - https://desk.dyne.org/s/7gHFaUloNEFB1 Wx#pdfviewer.

For the purposes of the prototype any singular piece of data in our system will have a data
entitlement in one of three logical states -

H2020-ICT-2016-1 DECODE D3.2

-4 -

https://decodeproject.eu/
https://www.thoughtworks.com/
https://www.dyne.org/
http://sec.cs.ucl.ac.uk/home/
https://www.thingful.net/
https://desk.dyne.org/s/7gHFaUIoNEFB1Wx#pdfviewer

decode
——

metadata
Search engine for private |OT data

node stlorage
DECODE Node Private data storage

- owner-only - the data is not discoverable or accessible and is essentially private.

- can-discover - the data is discoverable and will be made available for search. The data is not
accessible.

- can-access - the data is accessible and by default discoverable.
To qualify the terms used above :
- discoverable - the existence of the data can be found.

- accessible - the value of the data can be viewed. For the data to be accessible it is of course
discoverable.

It is important to note that the prototype does not, by design, implement authentication and as
such all entitlements once given are applied globally.

Architecture

The prototype is implemented as a set of HTTP services, written in golang, exposing various
endpoints accepting various JSON messages in a REST-like manner.

Each of the services is documented with a swagger api definition. More details can be found at
https://swagger.io/.

An overview of a single node system.
In this diagram two loT devices logically direct their data to the node service.

As a convenience we have included some “fake” loT devices as part of the prototype.

H2020-ICT-2016-1 DECODE D3.2

-5-

https://swagger.io/

decode
—_

The output of these devices correspond to the output of the device-hub
(https://github.com/thingful/device-hub) component as developed by thingful
(https://thingful.net) and open-sourced as part of thingful's involvement in the DECODE project.

The node service is the entry point for an instance of the storage service.

The node has a relationship with the metadata service.

The node service is responsible for:

- maintaining the configuration of data entitlements.

- accepting data from one or more sources - in the prototype this is a selection of IOT devices.

- orchestrating the discover-ability and accessibility of the data as per the configured data
entitlements.

The node service has a storage service which is responsible for:
- maintaining any saved data points

The node service represents the concept of the DECODE node in the DECODE Architecture
white-paper. Please note this has not been made public yet.

The metadata service is responsible for:

- maintaining an index of discoverable data and their locations.

- displaying any data that is accessible.

- allow a user to make an entitlement request to access data that is not yet accessible.
Both the node and metadata service expose a user interface.

The architecture is designed to scale with multiple DECODE nodes using a single metadata
service.

H2020-ICT-2016-1 DECODE D3.2

-6 -

https://github.com/thingful/device-hub
https://thingful.net/

decode

e
metadata
Search engine
. -
node s'gorage . node Fs)torage . node s;orage |
DECODE Node Private data storage : 5. DECODE Mode rivate data storage L DECODE Node Private data storage §

The above diagram shows three node instances and a single global metadata instance.

H2020-ICT-2016-1 DECODE D3.2

-7 -

Ontological mapping

decode
——

Data from the fake devices have been tagged with the following ontological data.

Notes ‘

Device Value Tag
Fake sine wave Value http://decode.eu#Fu sine wave data is fun.
n
sensor . Please note that this
ontology is made up for
the purpose of this
prototype.
http://www.w3.0rg/20 sine wave data is a float
01/XMLSchema#t#float value
http://purl.org/iot/voc sine wave data is sensor
ab/m3-litettSensor data
Fake temperature Temperature http://purl.org/iotivo Temperature is

humidity sensor

cab/m3-
lite#AirTemperature

AirTemperature

http://purl.org/iot/ivo
cab/m3-
lite#Environment

Temperature is
environmental data

http://purl.org/iot/vo
cab/m3-lite#tSensor

Temperature is sensor

data

http://www.w3.0rg/20
01/XMLSchema#float

Temperature is a float
value

Humidity

http://purl.org/iot/vo
cab/m3-
litetAirHumidity

Humidity is AirHumidity

http://purl.org/iot/vo
cab/m3-
lite#Environment

Humidity is
environmental data

http://purl.org/iot/vo
cab/m3-litettSensor

Humidity is sensor data

http://www.w3.0rg/20
01/XMLSchema#float

Humidity is a float value

H2020-ICT-2016-1

DECODE

-8 -

D3.2

http://localhost:8081/
http://localhost:8081/
http://localhost:8081/
http://localhost:8081/
http://localhost:8081/
http://localhost:8081/
http://purl.org/iot/vocab/m3-lite#Sensor
http://purl.org/iot/vocab/m3-lite#Sensor
http://localhost:8081/
http://localhost:8081/
http://purl.org/iot/vocab/m3-lite#AirHumidity
http://purl.org/iot/vocab/m3-lite#AirHumidity
http://purl.org/iot/vocab/m3-lite#AirHumidity
http://localhost:8081/
http://localhost:8081/

decode
__

The strategy applied for the selection of schemas is to reuse existing schemas where possible
and to fill any gaps with a proposed DECODE schema.

The m3-lite ontology (http://ontology.fiesta-iot.eu/ontologyDocs/fiesta-iot/doc) was developed as
part of the EU 2020 Fiesta-loT project and is used extensively at thingful.

Notes

- this is a prototype and not production software.
- there is no authentication and or authorization.

- all data is held in memory - resetting the environment will reset all of the data.

Building and Running

To build the software ensure you have installed the following software :

- Golang 1.7.3+

- Docker and Docker compose

- EIm 0.18+

Once you have a working installation download the code using the go get
go get gogs.dyne.org/DECODE/decode-prototype-da

The makefile contains helpers to build the environment plus some helpers for development.
make help

To build all of the docker containers locally for docker compose to use
make docker-build

To run the application components via docker compose

docker-compose up

The docker-compose tool will then map the ports exposed by the containers to local ports on
you own machine.

The ports it will try and use are - 8080, 8081 and 8083.
If theses ports are already in use the docker-compose tool will display a warning.

The prototype should then be available at the following urls

H2020-ICT-2016-1 DECODE D3.2

-9 -

decode

|

The node swagger api - http://localhost:8080/apidocs

The node Ul- http://localhost:8080
The node Ul allows for:

- adding and viewing loT devices

- viewing and editing data entitlements

The metadata swagger api - http://localhost:8081/apidocs

H2020-ICT-2016-1 DECODE D3.2

-10 -

decode

|

The metadata ui - http://localhost:8081

The storage swagger api - http://localhost:8083/apidocs

To stop the application components via docker compose you can either type Ctrl-C or from

another window issue the command

docker-compose down

H2020-ICT-2016-1 DECODE D3.2

-117 -

http://localhost:8083/apidocs

decode

Walk through

This walk through will demonstrate using the prototype from both a data owner and a data
requesters perspective.

The node application shows that no |oT devices have been configured.

The data owner adds a “Fake device to generate the perfect sine curve”

H2020-ICT-2016-1 DECODE D3.2

-12 -

decode
——

The device is given the name “wanderpolar” and is listed as a configured device.

On the “entitlements” tab we can see that a data entitlement is available to be configured. By
default the data is private.

This is confirmed by the Ul in the metadata service. There is only one node and all of its data is
private.

Clicking the “make data discoverable” link will now send the metadata for the item to the
metadata service.

The metadata screen now shows that we have three items of metadata now available. Our sine
wave data is tagged to three values

http://decode.ecu#Fun sine wave data is fun

http://www.w3.0rg/2001/XMLSchema#float sine wave data is a float value

http://purl.org/iot/vocab/m3-lite#Sensor sine wave data is sensor data

Selecting the first option shows us that there is one piece of data tagged to this value.

Selecting view asks the data requester if they would like to “request access” to the value. It is
important to note that the metadata service does not know what the data entitlement for the
data is. The node service has refused access to the data.

The data requester selects the “request access” link.

H2020-ICT-2016-1 DECODE D3.2

-13 -

http://localhost:8081/
http://localhost:8081/
http://localhost:8081/

decode

In the node service we can now see the request for access. The data owner can accept or decline
he request. Declining the request makes no change to the data entitlement. Accepting the
request will make the data viewable.

The data owner accepts the request and the entitlement is updated accordingly.

The data requester can now attempt to view the data again. The data is displayed - the perfect

sine graph.
At some point in the future the data owner decides to make their data private again.

Their metadata is removed for the metadata service.

H2020-ICT-2016-1 DECODE D3.2

-14 -

