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1 Introduction 
 

This brief technical deliverable illustrates aspects related to the integration and 

deployment of the DECODE OS (D4.4) with the DECODE HUB hardware platform 

according to benchmarks (D4.5) and the indicated reference prototype (D4.8).  

 

This deliverable configures itself also as an operational manual about the following 

topics: 

1. Specifications of the HUB hardware adopted 

2. Procedures to build the OS for the HUB 

3. Instructions to deploy the HUB running the OS 

4. Overview of networking access and operations 

This document provides pilot partners in DECODE the basic knowledge to run a 

DECODE HUB node on their premises, assessing the impact of such a deployment within 

their infrastructure. As the piloting phase unfolds towards D4.10 “DECODE HUB devices 

piloted in trials” this document will be extended considering the security and liability 

implications emerged. 

The latest version of this deliverable is made available to the public as part of the 

documentation of DECODE OS and attainable from its website on. 
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2 Hardware specification  
According to findings outlined in D4.8 by project partner Arduino, we have selected an 

embedded low-consumption board for its specific characteristics conforming our 

requirements. This choice has been made despite certain shortcomings on 

performance shown in D4.5 benchmarks that may be regarded as negligible in this 

piloting phase. 

 

In brief, these characteristics are: - Availability of a SATA interface for storage solutions 

beyond SDCards - Free from any proprietary firmware blob for boot (100% free eligible) - 

Capable of running mainline Linux kernel without patches - Assembled in Europe and 

certified as Open Hardware. 

 

DECODE HUB nodes (elsewhere indicated as “nano-nodes”) are then made using the 

Olimex Lime2 hardware boards (based on a ARM20 processor) and connected using a 

gigabit Ethernet port. A LiPo battery provides stability in case of short power cuts and a 

noise immune power supply provides the necessary 5v energy to function. 

The boards are assembled in Europe and are certified Open Hardware: they do not 

require any proprietary blob to run. It is therefore possible to assume that any software 

function running on the boards are not conditioned by the hardware manufacturer, 

clearing issues of liability and integrity of computations. 

 

2.1 Manufacturer’s documentation 
The manufacturer provides extensive documentation about these boards: 

 The Olimex Lime2 user manual 
 

 The full A20 hardware datasheet 

 
For a quick overview of the hardware here is included the block diagram found in the 

A20 datasheet (AllWinner chip): 

https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXIno-LIME2/resources/A20-OLinuXino-LIME2-UM.pdf
https://github.com/OLIMEX/OLINUXINO/blob/master/HARDWARE/A20-PDFs/A20%20Datasheet%20v1.0%2020130227.pdf
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Figure 1 

 

An illustrated image of the Lime2 board assemblage with indicated components is also 

reported here from its user manual. Here the front: 

 

 
Figure 2 
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And here below the rear: 

 
Figure 3 

 

In the following chapter is provided information on how to build the DECODE OS system 

to operate on this board. 
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3 DECODE OS builds and hardware 

integration 
The DECODE operating system is built in a number of stages: this process is detailed in 

D4.4 and will be briefly documented here. 

This section outlines how to build DECODE OS for our DECODE HUB hardware target 

architecture, which is the hard-float ARM (armhf). For the purpose we adopted the 

Devuan Ascii (2.0.0) armhf port. 

Each build stages illustrated below is independent from each other and can be 

triggered on its own; however the final stage requires the results from the previous ones 

to be able to integrate them together. 

 

3.1 Userspace 
The first stage built is the actual userspace, where the system is bootstraped from 

scratch, and packages and configurations are added on top of it. This is the step most 

extensively described in D4.4. The tools we use to build our userspace are made 

available in the  git repository. These tools are a higher-level abstraction on top of 

Devuan’s Arm-SDK, which is the way ARM-based images are created in Devuan. The 

port of Devuan to ARM has gathered an active community that can be also reached 

on the Freenode IRC channel #devuan-arm. 

The process of building via the Devuan SDK is abstracted using a concept called 

blends: it offers us a more high-level approach to configuring a base system after it has 

been bootstrapped. Using this blend, we are able to easily and reproducibly install 

various software - from the init system (OpenRC), to the very final userspace tools 

needed for DECODE like Chainspace and the JVM, tor-dam and Golang for more 

applications. 

Along with installing software, the blends allow us to provide file overlays, which enable 

us to have a directory structure that resembles the bootstrapped system, and use the 

overlay to reconfigure any existing files. Finally, it also gives us a space where we can 

mark certain binaries with needed flags that are used in the kernelspace. 
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3.2 Kernelspace 
The ARM kernelspace consists of mainline Linux (official kernel.org) releases (version 

4.9.y) which in the special case of DECODE OS requirements for integrity and security of 

the system we patch with the unofficial grsecurity patch that is maintained for this very 

kernel version. It is maintained at  and (unlike x86) does not suffer from the recent 

Meltdown and Spectre attacks (CVE-2017-5715, CVE-2017-5753, and CVE-2017-5754) 

while this does not apply for all ARM processors. 

The tools used for building this stage are packed into a single git repository which is a 

suite of makefiles that contain deterministic rules for building the Linux kernel, the 

initramfs, and finally packs the results into a tarball, and a ready-to-flash raw image - 

both of which can be used and put onto a microSD card to be used with the Olimex 

OLinuXino LIME2. This suite can be found at the DECODE project’s Github:  

Roundshot is in fact a new software product part of this DECODE deliverable, to provide 

a seamless and minimalist way to distribute signed updates of the DECODE OS to all 

running nodes, with the only need to reboot them in order to activate the updates. 

Roundshot is engineered with minimalism in mind and consists only of a set of 

declarative scripts (GNU Makefile) to pack a new system ramdisk that will operate the 

update. 

 

3.2.1 Cross-toolchain and initramfs 

When ran, Roundshot will first build a musl-based GCC toolchain which can 

crosscompile and statically link armhf binaries for us. Static compilation is adopted in 

many critical parts of DECODE OS infrastructure also to keep integrity with the privilege 

escalation model “sup” that is described in DECODE’s whitepaper. 

The adoption of musl-libc is useful for having a static initramfs, and smaller binaries than 

what the GNU libc provides. 

The ramdisk (initramfs) consists of busybox, btrfs tools, and gnupg, which provide tools 

necessary for fetching our over-the-air updates to the DECODE operating system. It also 

contains the logic of setting up the system to boot into the actual userspace that was 

built in another stage. 

3.2.2 The Linux kernel 

After finishing the initramfs, the makefile suite will continue with fetching Linux sources 

and the patches, applying them, and compiling the Linux kernel and the necessary 

device tree that ARM boards need to define their hardware. These device trees are 

used by the u-boot bootloader, which is explained further on. 

 

https://www.musl-libc.org/
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3.2.3 The squashfs 

The squashfs is the fourth phase of Roundshot, which takes the userspace we have 

bootstrapped and configured and compresses it into a read-only squashfs file. This very 

file can be rebuilt and is used when updates are shipped. If an update is available, this 

file is replaced in-place on the machine which has downloaded the update after 

rebooting. 

On the actual hardware, this squashfs is configured and set up through the logic found 

in our initramfs. The squashfs also contains the kernel modules that were built in the 

previous phase. The modules are not needed inside the initramfs. 

 

3.2.4 The Bootloader 

The Olimex Lime2 - much like all other ARM SoCs - uses the u-boot bootloader. Luckily, in 

the case of Lime2, we don’t require any proprietary blobs or firmware and we can 

utilize explicitly libre software here. u-boot is built using the musl-libc cross-toolchain as 

well, and is flashed on the microSD card. The device tree file that we compiled with 

Linux sources is read by u-boot at the boot stage, along with boot.scr which is a u-boot 

boot script that contains the necessary information of what partitions/devices the dtb, 

the kernel, and the initramfs can be found on. 

Finally, when all of this is finished, the results are packed and compressed into a tar.gz 

file, and a raw .img file. These files are used for initial distribution and are to be flashed 

on microSD cards. 
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4 Decode OS hardware deployment  
This section gives a quick and visual explanation on how to deploy the provided 

DECODE OS image on an Olimex Lime2 board and power it up. After this the DECODE 

HUB will be online and automatically connect to all other DECODE nodes. 

Upon creating the userspace and kernelspace, we deploy our results on the Olimex 

OLinuXino LIME2 ARM SoC. 

 
Figure 4 

 

Following up, we connect the SATA hard drive with the data and power cables that are 

custom-built by Olimex. 
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Figure 5 

We flash the image on a microSD card and put it in place. 

 
Figure 6 
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The initramfs requires a network connection to be able to check for and eventually 

download available updates to the system. It assumes that the router it’s connecting to 

offers DHCP. 

 
Figure 7 

 

Finally, by connecting the battery and the power supply, the board will start booting 

and if everything is done properly, in a couple of minutes it will boot into DECODE OS. 
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 Figure 8 
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5 Network activity 
This section offers a brief overview of all the visible network activity that a DECODE 

NODE produces when operated. 

 

5.1 Local network 
On bootup, DECODE nodes will request DHCP over Ethernet. 

In case of lack of DHCP the box will boot after a delay, but will not be online and will 

not join the DECODE network. The board can eventually be configured by hand by 

connecting a keyboard and an HDMI monitor. 

 

5.2 Incoming traffic 
DECODE nodes do not require any input ports to be open of forwarded, nor any UPNP 

capability on the LAN gateway. Nodes route all their traffic via the Tor network and 

offer the possibility to application space utilities to receive any communication via 

Socks5 protocol router by Tor. This also means that there are no common firewall 

configurations that can stop the DECODE node from connecting: once it has DHCP 

and at least web access it will manage to join the Tor network and get in touch with all 

the DECODE network. 

 

5.3 Outgoing traffic 
Once received a local IP via DHCP, DECODE nodes build outgoing connections to: 

1. pool.ntp.org (port 123) to get current time 

2. dam.decodeproject.eu (port 80) to see if there are available system updates 

3. if there are updates, dam.decodeproject.eu:80 is accessed again to 

download the update 

These is the only deterministic traffic produced by a DECODE node upon boot and can 

be considered a base for fingerprinting nodes running on the local network, recognizing 

them from this initial behavior. All subsequent connections are routed through Tor and 

therefore opaque even to the local network administrators. 

 

5.4 Continued operation 
Once this first configuration phase (initramfs phase) is done, we continue booting into 

the actual system. The system will again request NTP on outbound port 123 and 

continue by starting all the remaining services in userspace. All services are tunnelled 
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through Tor socks and therefore do not require any inbound or outbound connections 

outside of Tor. 

 

Tor’s network requirements can be found in the Tor Project FAQ, most notably: 

 Tor Outbound Ports documentation 

 Tor Firewall Ports documentation 

DECODE nodes operate only as hidden services inside Tor and connect only to other 

DECODE nodes: they do not act as entry, relay or exit nodes for the Tor network. 

  

https://www.torproject.org/docs/faq.html.en#OutboundPorts
https://www.torproject.org/docs/faq.html.en#FirewallPorts
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6 Conclusion 
This brief deliverable consists of accompanying documentation to the following 

software implementations realised for the DECODE project: 

 DECODE OS Devuan blend (ARM and VM targets) 

 Tor Dam software application (Go language) 

 Roundshot ramdisk (GNU Makefile) 

 

The implementation of the OS with the HUB hardware platform has been a 

straightforward process and it did not induce any compromise on the freedom of 

software and hardware deployed. The DECODE HUB when equipped is usable as a 

reliable platform for P2P networks that abide to the principles of privacy by design 

enounced in D4.1. 

The work outlined in this deliverable will proceed further to test the behaviour of 

DECODE HUBs in various situations, functioning as edge routers to the DECODE network, 

with their deployment on premises of various DECODE pilot partners. 

The upcoming deliverable D4.10 “DECODE HUB devices piloted in trials” will report field 

tests conducted on pilots, while the D4.16 “Report on DECODE architecture stability and 

usability” shall outline the stability and usability of this component used in conjunction 

with DECODE application space tooling as well as standalone base for more modular 

P2P applications in need to deploy cloud-shaped micro-service swarms whose 

connections can be private, pseudonimic and encrypted. 

 

 

https://github.com/DECODEproject/decode-os
https://github.com/DECODEproject/tor-dam
https://github.com/DECODEproject/roundshot

