
H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 1 DECODE OS and HUB platform

Integration and

deployment of the

DECODE OS and HUB

platform

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 2 DECODE OS and HUB platform

Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

D4.6 Integration and deployment of the DECODE OS and HUB platform

Version Number: V1.0

Lead beneficiary: Dyne.org

Due Date: June 30th

Author(s): Denis Roio, Ivan Jelin (Dyne.org)

Editors and reviewers: Guy Samuel, Jordi Coscolla (Thoughtworks), Alberto Sonnino

(UCL)

Dissemination level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO Confidential, only for members of the consortium (including the Commission

Services)

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer,

Barcelona City Hall)

Date: 02/07/2018

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 3 DECODE OS and HUB platform

Table of Contents

1 Introduction .. 4

2 Hardware specification .. 5

2.1 Manufacturer’s documentation .. 5

3 DECODE OS builds and hardware integration .. 8

3.1 Userspace .. 8

3.2 Kernelspace .. 9

3.2.1 Cross-toolchain and initramfs .. 9

3.2.2 The Linux kernel .. 9

3.2.3 The squashfs ... 10

3.2.4 The Bootloader .. 10

4 Decode OS hardware deployment ... 11

5 Network activity ... 15

5.1 Local network ... 15

5.2 Incoming traffic .. 15

5.3 Outgoing traffic .. 15

5.4 Continued operation ... 15

6 Conclusion .. 17

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 4 DECODE OS and HUB platform

1 Introduction

This brief technical deliverable illustrates aspects related to the integration and

deployment of the DECODE OS (D4.4) with the DECODE HUB hardware platform

according to benchmarks (D4.5) and the indicated reference prototype (D4.8).

This deliverable configures itself also as an operational manual about the following

topics:

1. Specifications of the HUB hardware adopted

2. Procedures to build the OS for the HUB

3. Instructions to deploy the HUB running the OS

4. Overview of networking access and operations

This document provides pilot partners in DECODE the basic knowledge to run a

DECODE HUB node on their premises, assessing the impact of such a deployment within

their infrastructure. As the piloting phase unfolds towards D4.10 “DECODE HUB devices

piloted in trials” this document will be extended considering the security and liability

implications emerged.

The latest version of this deliverable is made available to the public as part of the

documentation of DECODE OS and attainable from its website on.

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 5 DECODE OS and HUB platform

2 Hardware specification
According to findings outlined in D4.8 by project partner Arduino, we have selected an

embedded low-consumption board for its specific characteristics conforming our

requirements. This choice has been made despite certain shortcomings on

performance shown in D4.5 benchmarks that may be regarded as negligible in this

piloting phase.

In brief, these characteristics are: - Availability of a SATA interface for storage solutions

beyond SDCards - Free from any proprietary firmware blob for boot (100% free eligible) -

Capable of running mainline Linux kernel without patches - Assembled in Europe and

certified as Open Hardware.

DECODE HUB nodes (elsewhere indicated as “nano-nodes”) are then made using the

Olimex Lime2 hardware boards (based on a ARM20 processor) and connected using a

gigabit Ethernet port. A LiPo battery provides stability in case of short power cuts and a

noise immune power supply provides the necessary 5v energy to function.

The boards are assembled in Europe and are certified Open Hardware: they do not

require any proprietary blob to run. It is therefore possible to assume that any software

function running on the boards are not conditioned by the hardware manufacturer,

clearing issues of liability and integrity of computations.

2.1 Manufacturer’s documentation
The manufacturer provides extensive documentation about these boards:

 The Olimex Lime2 user manual

 The full A20 hardware datasheet

For a quick overview of the hardware here is included the block diagram found in the

A20 datasheet (AllWinner chip):

https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXIno-LIME2/resources/A20-OLinuXino-LIME2-UM.pdf
https://github.com/OLIMEX/OLINUXINO/blob/master/HARDWARE/A20-PDFs/A20%20Datasheet%20v1.0%2020130227.pdf

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 6 DECODE OS and HUB platform

Figure 1

An illustrated image of the Lime2 board assemblage with indicated components is also

reported here from its user manual. Here the front:

Figure 2

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 7 DECODE OS and HUB platform

And here below the rear:

Figure 3

In the following chapter is provided information on how to build the DECODE OS system

to operate on this board.

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 8 DECODE OS and HUB platform

3 DECODE OS builds and hardware

integration
The DECODE operating system is built in a number of stages: this process is detailed in

D4.4 and will be briefly documented here.

This section outlines how to build DECODE OS for our DECODE HUB hardware target

architecture, which is the hard-float ARM (armhf). For the purpose we adopted the

Devuan Ascii (2.0.0) armhf port.

Each build stages illustrated below is independent from each other and can be

triggered on its own; however the final stage requires the results from the previous ones

to be able to integrate them together.

3.1 Userspace
The first stage built is the actual userspace, where the system is bootstraped from

scratch, and packages and configurations are added on top of it. This is the step most

extensively described in D4.4. The tools we use to build our userspace are made

available in the git repository. These tools are a higher-level abstraction on top of

Devuan’s Arm-SDK, which is the way ARM-based images are created in Devuan. The

port of Devuan to ARM has gathered an active community that can be also reached

on the Freenode IRC channel #devuan-arm.

The process of building via the Devuan SDK is abstracted using a concept called

blends: it offers us a more high-level approach to configuring a base system after it has

been bootstrapped. Using this blend, we are able to easily and reproducibly install

various software - from the init system (OpenRC), to the very final userspace tools

needed for DECODE like Chainspace and the JVM, tor-dam and Golang for more

applications.

Along with installing software, the blends allow us to provide file overlays, which enable

us to have a directory structure that resembles the bootstrapped system, and use the

overlay to reconfigure any existing files. Finally, it also gives us a space where we can

mark certain binaries with needed flags that are used in the kernelspace.

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 9 DECODE OS and HUB platform

3.2 Kernelspace
The ARM kernelspace consists of mainline Linux (official kernel.org) releases (version

4.9.y) which in the special case of DECODE OS requirements for integrity and security of

the system we patch with the unofficial grsecurity patch that is maintained for this very

kernel version. It is maintained at and (unlike x86) does not suffer from the recent

Meltdown and Spectre attacks (CVE-2017-5715, CVE-2017-5753, and CVE-2017-5754)

while this does not apply for all ARM processors.

The tools used for building this stage are packed into a single git repository which is a

suite of makefiles that contain deterministic rules for building the Linux kernel, the

initramfs, and finally packs the results into a tarball, and a ready-to-flash raw image -

both of which can be used and put onto a microSD card to be used with the Olimex

OLinuXino LIME2. This suite can be found at the DECODE project’s Github:

Roundshot is in fact a new software product part of this DECODE deliverable, to provide

a seamless and minimalist way to distribute signed updates of the DECODE OS to all

running nodes, with the only need to reboot them in order to activate the updates.

Roundshot is engineered with minimalism in mind and consists only of a set of

declarative scripts (GNU Makefile) to pack a new system ramdisk that will operate the

update.

3.2.1 Cross-toolchain and initramfs

When ran, Roundshot will first build a musl-based GCC toolchain which can

crosscompile and statically link armhf binaries for us. Static compilation is adopted in

many critical parts of DECODE OS infrastructure also to keep integrity with the privilege

escalation model “sup” that is described in DECODE’s whitepaper.

The adoption of musl-libc is useful for having a static initramfs, and smaller binaries than

what the GNU libc provides.

The ramdisk (initramfs) consists of busybox, btrfs tools, and gnupg, which provide tools

necessary for fetching our over-the-air updates to the DECODE operating system. It also

contains the logic of setting up the system to boot into the actual userspace that was

built in another stage.

3.2.2 The Linux kernel

After finishing the initramfs, the makefile suite will continue with fetching Linux sources

and the patches, applying them, and compiling the Linux kernel and the necessary

device tree that ARM boards need to define their hardware. These device trees are

used by the u-boot bootloader, which is explained further on.

https://www.musl-libc.org/

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 10 DECODE OS and HUB platform

3.2.3 The squashfs

The squashfs is the fourth phase of Roundshot, which takes the userspace we have

bootstrapped and configured and compresses it into a read-only squashfs file. This very

file can be rebuilt and is used when updates are shipped. If an update is available, this

file is replaced in-place on the machine which has downloaded the update after

rebooting.

On the actual hardware, this squashfs is configured and set up through the logic found

in our initramfs. The squashfs also contains the kernel modules that were built in the

previous phase. The modules are not needed inside the initramfs.

3.2.4 The Bootloader

The Olimex Lime2 - much like all other ARM SoCs - uses the u-boot bootloader. Luckily, in

the case of Lime2, we don’t require any proprietary blobs or firmware and we can

utilize explicitly libre software here. u-boot is built using the musl-libc cross-toolchain as

well, and is flashed on the microSD card. The device tree file that we compiled with

Linux sources is read by u-boot at the boot stage, along with boot.scr which is a u-boot

boot script that contains the necessary information of what partitions/devices the dtb,

the kernel, and the initramfs can be found on.

Finally, when all of this is finished, the results are packed and compressed into a tar.gz

file, and a raw .img file. These files are used for initial distribution and are to be flashed

on microSD cards.

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 11 DECODE OS and HUB platform

4 Decode OS hardware deployment
This section gives a quick and visual explanation on how to deploy the provided

DECODE OS image on an Olimex Lime2 board and power it up. After this the DECODE

HUB will be online and automatically connect to all other DECODE nodes.

Upon creating the userspace and kernelspace, we deploy our results on the Olimex

OLinuXino LIME2 ARM SoC.

Figure 4

Following up, we connect the SATA hard drive with the data and power cables that are

custom-built by Olimex.

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 12 DECODE OS and HUB platform

Figure 5

We flash the image on a microSD card and put it in place.

Figure 6

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 13 DECODE OS and HUB platform

The initramfs requires a network connection to be able to check for and eventually

download available updates to the system. It assumes that the router it’s connecting to

offers DHCP.

Figure 7

Finally, by connecting the battery and the power supply, the board will start booting

and if everything is done properly, in a couple of minutes it will boot into DECODE OS.

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 14 DECODE OS and HUB platform

 Figure 8

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 15 DECODE OS and HUB platform

5 Network activity
This section offers a brief overview of all the visible network activity that a DECODE

NODE produces when operated.

5.1 Local network
On bootup, DECODE nodes will request DHCP over Ethernet.

In case of lack of DHCP the box will boot after a delay, but will not be online and will

not join the DECODE network. The board can eventually be configured by hand by

connecting a keyboard and an HDMI monitor.

5.2 Incoming traffic
DECODE nodes do not require any input ports to be open of forwarded, nor any UPNP

capability on the LAN gateway. Nodes route all their traffic via the Tor network and

offer the possibility to application space utilities to receive any communication via

Socks5 protocol router by Tor. This also means that there are no common firewall

configurations that can stop the DECODE node from connecting: once it has DHCP

and at least web access it will manage to join the Tor network and get in touch with all

the DECODE network.

5.3 Outgoing traffic
Once received a local IP via DHCP, DECODE nodes build outgoing connections to:

1. pool.ntp.org (port 123) to get current time

2. dam.decodeproject.eu (port 80) to see if there are available system updates

3. if there are updates, dam.decodeproject.eu:80 is accessed again to

download the update

These is the only deterministic traffic produced by a DECODE node upon boot and can

be considered a base for fingerprinting nodes running on the local network, recognizing

them from this initial behavior. All subsequent connections are routed through Tor and

therefore opaque even to the local network administrators.

5.4 Continued operation
Once this first configuration phase (initramfs phase) is done, we continue booting into

the actual system. The system will again request NTP on outbound port 123 and

continue by starting all the remaining services in userspace. All services are tunnelled

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 16 DECODE OS and HUB platform

through Tor socks and therefore do not require any inbound or outbound connections

outside of Tor.

Tor’s network requirements can be found in the Tor Project FAQ, most notably:

 Tor Outbound Ports documentation

 Tor Firewall Ports documentation

DECODE nodes operate only as hidden services inside Tor and connect only to other

DECODE nodes: they do not act as entry, relay or exit nodes for the Tor network.

https://www.torproject.org/docs/faq.html.en#OutboundPorts
https://www.torproject.org/docs/faq.html.en#FirewallPorts

H2020-ICT-2016-1 DECODE D4.6 Integration and deployment of the

 17 DECODE OS and HUB platform

6 Conclusion
This brief deliverable consists of accompanying documentation to the following

software implementations realised for the DECODE project:

 DECODE OS Devuan blend (ARM and VM targets)

 Tor Dam software application (Go language)

 Roundshot ramdisk (GNU Makefile)

The implementation of the OS with the HUB hardware platform has been a

straightforward process and it did not induce any compromise on the freedom of

software and hardware deployed. The DECODE HUB when equipped is usable as a

reliable platform for P2P networks that abide to the principles of privacy by design

enounced in D4.1.

The work outlined in this deliverable will proceed further to test the behaviour of

DECODE HUBs in various situations, functioning as edge routers to the DECODE network,

with their deployment on premises of various DECODE pilot partners.

The upcoming deliverable D4.10 “DECODE HUB devices piloted in trials” will report field

tests conducted on pilots, while the D4.16 “Report on DECODE architecture stability and

usability” shall outline the stability and usability of this component used in conjunction

with DECODE application space tooling as well as standalone base for more modular

P2P applications in need to deploy cloud-shaped micro-service swarms whose

connections can be private, pseudonimic and encrypted.

https://github.com/DECODEproject/decode-os
https://github.com/DECODEproject/tor-dam
https://github.com/DECODEproject/roundshot

