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DECODE provides a distributed architecture that stores data about cities
and people in a secure and privacy-friendly way. This involves designing a
distributed ledger (or blockchain) that is secure and scalable, and fulfills re-
quirements for availability, integrity and privacy. It is therefore important
to understand how transparency and privacy can be balanced in distributed
ledgers, and how to design scalable blockchain solutions. A related goal is
to enable users to define rules that specify how their data should be used.
Key challenges here are secure generation and retrieval of credentials that
are stored in the blockchain, how to combine attribute-based encryption and
attribute-based credentials, and the ability to anonymously conduct transac-
tions. In this document, we present a survey of data entitlements (Section 1),
blockchain techniques to provide appropriate options for DECODE usecases
(Section 2), and privacy technologies (such as Attributed Based Credentials—
shortened to ABC) relevant to blockchains (Section 3).

1. Data Entitlements

“One of the promises of the Internet of Things (IoT) is that ev-
erything should talk to everything else. These talkative “things”
include sensors, consumer appliances, home automation systems,
and even connected vehicles. The frameworks through which such
interconnectivity is arranged, controlled, and mediated—that is,
how these things “entitle” each other to connect—is going to be
a fundamental part of IoT. Managing this entitlement, which de-
fines who can access our device data, and under what conditions
it can be found and used by others, will be one of the major
challenges for consumers and businesses.” [27]

Data entitlements could be thought of as an evolution of a traditional
authorization scheme specialized for the securing of both personal, business
and IoT data. Giving the data owner full control of the access and discovery
of their data creates a system of empowerment whose currency is privacy.
Privacy is a fundamental right. The relationship of privacy and data entitle-
ment is subject to many nuances. Users might allow a party to search and
access their data, but only under the understanding that they will not be
personally identified or only under specific circumstances. For example, a
driver of a motor vehicle with an onboard camera might want to entitle the
emergency services access to his data when there is a road traffic accident.



However, the driver might not want to be identified as being in a certain ge-
ographical area or that he was exceeding the speed limit at the time. Data,
when available, can directly or indirectly compromise privacy in a way that
would surprise a user.

1.1. Background and Concepts

When discussing data entitlements, it first necessary to understand the
concept of authentication, its relationship to authorization and their com-
bined application as the basis for access control. Wikipedia defines authen-
tication and authorization as follows [49]:

“In contrast with identification, which refers to the act of
stating or otherwise indicating a claim purportedly attesting to a
person or thing’s identity, authentication is the process of actually
confirming that identity. It might involve confirming the identity
of a person by validating their identity documents, verifying the
authenticity of a website with a digital certificate, determining the
age of an artifact by carbon dating, or ensuring that a product
is what its packaging and labeling claim to be. In other words,
authentication often involves verifying the validity of at least one
form of identification.”

“The process of authorization is distinct from that of authen-
tication. Whereas authentication is the process of verifying that
‘you are who you say you are’, authorization is the process of ver-
ifying that ‘you are permitted to do what you are trying to do’.
This does not mean authorization presupposes authentication; an
anonymous agent could be authorized to a limited action set.”

Once a computer system has authenticated an entity, the process of au-
thorization is usually enabled by enforcing a series of policies. The concept
of policy management is well understood among vendors of centralized soft-
ware systems [39]. Gartner defines the concept of entitlement management
as follows [23]:

“Entitlement management is technology that grants, resolves,
enforces, revokes and administers fine-grained access entitlements
(also referred to as ‘authorizations’, ‘privileges’; ‘access rights’,



‘permissions’ and/or ‘rules’). Its purpose is to execute IT access
policies to structured/unstructured data, devices and services.
Entitlement management can be delivered by different technolo-
gies, and is often different across platforms, applications, network
components and devices.”

1.2. Entitlements in Decentralized Systems

In the context of DECODE, data entitlement could be described as the
definition, management and application of authorization policies. The DE-
CODE architecture is inherently distributed and as such the management of
data entitlements may contain certain challenges not present in a tradition-
ally centralized system. These challenges have been discussed below:

Challenge of embedded decisions. The authorization policy for a piece of
data would need to be consistent wherever that data is stored. Data in
a distributed system may be sharded (i.e., split by a logical organization)
or replicated (many copies) or as is more usual, both. A change made to
the authorization policy would need to be replicated alongside the data it
governs to allow for local decision making on authorizations against the dis-
tributed data. A desirable property of this replication is consistency—all
nodes holding the data need to enforce the same policy.

Challenge of lack of overview. Distributed authorization policies (e.g. those
related to data created from other data) make it difficult to gather and
understand policies governing the data. If the data is subject to a data
entitlement policy regarding any derived data and any of its derived data,
there are significant problems in tracing and tracking the policies and data.

Challenge of identity integration. A data entitlement system within the con-
text of a distributed system may need to interface with one of many identity
systems. These identity systems may or may not outlive lifetime of the data.
Consider the impact of an identity provider ceasing to exist and orphaning
access to data when a user cannot prove who they are.

Challenge of expression. A formal expression of a data entitlement should
have a rich model for the expression of access and discovery. Rights can be
expressed against the data, only part of the data, the derived data and to
a singular party or groups of parties. It might capture aspects of temporal
access (at certain times) or situational access (only in an emergency). It
might wish to capture some aspects of differential privacy and anonymization.
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1.3. Formal Policies

In a decentralized infrastructure, it is worthwhile considering a formal
format for expressing the policy of a data entitlement. This format would, if
complete, allow for decisions to be made local to the data without consulta-
tion of a centralised third party, as stated by Woo et al. [50]:

“In most existing systems, authorization is specified using
some low-level system-specific mechanisms, e.g., protection bits,
capabilities and access control lists. We argue that authoriza-
tion is an independent semantic concept that must be separated
from implementation mechanisms and given a precise semantics.
We propose a logical approach to representing and evaluating au-
thorization. Specifically, we introduce a language for specifying
policy bases. A policy base encodes a set of authorization require-
ments and is given a precise semantics based upon a formal notion
of authorization policy.”...“a set of authorization requirements is
specified declaratively by a policy base. Unlike most existing ap-
proaches, the semantics of authorization is defined independently
and is separate from implementation mechanisms.”

1.4. Approaches to Entitlements

Although there is a wide range of related work this document will consider
UNIX file permissions from Bell Labs, XACML from OASIS, P3P from the
W3C, S4P which builds on the work of SECPal, both Microsoft Research,
and Soutaei from Planning Systems and Fleet Numerical Meteorology and
Oceanography Center as relevant to the DECODE project.

The UNIX [43] file system implements authorisation with such brevity
and power of expression that is is worth considering although it does not
contain the higher level constructs of the other systems we will examine.
The UNIX file system applies the building blocks of read, write and execute
for both the owner of the file, the group the file belongs to and for everyone
else. Additionally through the application of the Set User ID (SUID) and Set
Group ID (SGID) bit an operation can gain or lose temporary permissions.
For each file, directory and device this information is held in 12 bits.

XACML (eXtensible Access Control Markup Language) [38] first ap-
peared in 2001 and has gained adoption mostly in the enterprise. XACML is
a XML based domain specific language that formalises an Attribute-Based
Access Control system (ABAC). XACML systems have mostly been designed

7



and developed as centralised authorities within an organisation. XACML
proposes a novel system of obligations. An obligation is a directive that must
be carried out before, on or after the authorisation event. In the (pseudo-text)
example below, actions are defined on the outcome of the access request.

Allow access to resource MedicalJournal with attribute patientID=x
if Subject match DesignatedDoctorOfPatient
and action is read
with obligation
on Permit: doLog_Inform(patientID, Subject, time)
on Deny : doLog_UnauthorizedLogin(patientID, Subject, time)

Whilst XACML is both an architecture and a policy specification it is
the policy dimension that is particularly of interest with features such as
obligation, time based access and high level predicates. Reliance on a cen-
tralized point of authority for authorizations is a common XACML pattern.
The design is followed by the UMA (User Managed Access) project from
Katara [29]. UMA builds on the OAUTH2 specification enabling “privacy
controls that are individual-empowering” and might be thought of as a more
modern form of the XACML based systems. XACML has also been used as
the base for other privacy related works including PAPEL (A Language and
Model for Provenance-Aware Policy Definition and Execution) [44]. PAPEL
exposes a provenance model, for example a user’s health records can be read
but only for the purpose of research with their names anonymized. PAPEL
also introduces a traceability of compliance dimension via the exposing of
attributes and reduced facts.

P3P [17] proposed a machine readable format to express how an organi-
zation (accessed via the Internet) will attempt to protect and use third-party
data. The organization states how it may treat data once it has been gath-
ered using a fixed vocabulary. P3P is web centric in its scope and the fixed
vocabulary limits its usefulness when applied to the definition of data enti-
tlement policies. Furthermore it does not support the use case of the data
owner being able to express a nuanced policy specific to their data.

SecPAL [7] proposed a high level authorization format. The format con-
sists of the application of one or more statements and predicates. Similar to
the expressions found in a constraint logic programming language, the intent
is expressed in an almost natural language format. SecPAL’s major advance-
ment is to guarantee that as long as certain syntactic conditions were met
that the logic would terminate (e.g., be computed). In the example below,
Admin is an authority of the system (e.g., locally or centrally) and Alice can



only access the data if she is a student. The policy is valid for the period on
1 year from when it has been set.

Admin says Alice is a student until 31/7/2007
Admin says Alice is entitled to access temperature data from my sensor" if
Alice is a student till date,

currentTime () <= date,

date - currentTime () <= 1 year

Implicit in the effective application of the above example is the means to
revoke Alice’s role as a student if for instance Alice had to leave the university
unexpectedly. SecPAL suggests giving each authorization a unique identifier
(ID) and introduces the “revoke” keyword.

Admin says Admin revokes ID if currentTime () > 31/6/2007

Multiple policy idioms can be expressed within SecPAL. It is possible
to define a policy allowing other users to delegate their credentials to other
users. In the example below, Bob gives Alice the ability to read the file
foo/bar:

FileServer says user can say X can access resource if user can access resource

FileServer says Bob can read file://foo/
Bob says Alice can read file://foo/bar

SecPal introduces a verb “can act as” to implement role membership and
role hierarchies. In the example below, Alice can read file://docs/:

NHS says FoundationTrainee can read file://docs/

NHS says SpecialistTrainee can act as FoundationTrainee

NHS says SeniorMedPractitioner can act as SpecialistTrainee
NHS says Alice can act as SeniorMedPractitioner

Soutei [42] is a logic-based trust-management system that proposes that
policies live within a Closed World Assumption—a formal system of logic
based on the presumption that a statement that is true is also known to be
true and conversely what is not known to be true is false. A core design idea
behind Soutei is that an entity or a right needs to be defined before usage.
The paper states that:

“Soutei policies and credentials are written in a declarative
logic-based security language and thus constitute distributed logic
programs. Soutei policies are modular, concise, and readable.
They support policy verification, and, despite the simplicity of the
language, express role- and attribute-based access control lists,
and conditional delegation.”



Soutei describes a system of efficiently resolving authorization requests
without loading the complete archive of authorization rules and maintaining
resilience against careless, incomplete or malicious rule sets. An example rule
set is given below that allows access only from the TP range 192.168.0.0/8
(the first example is followed by its pesudo-text equivalent):

may(7access) :-
application says ip-address(?IP),
application says ip-of (?IP, #n192.168.0.0/8),
administrator (?admin),
7admin says may(7access).

known-access (read) .

known-access(write) .

Define access as read
Define access as write
If request has an IP address
If request is in range 192.168.0.0/8
If there is an administrator called admin
Admin says they can read or write

S4P [6] builds on SecPAL and proposes a formalized language to distin-
guish between service behaviours (how user data is going to be used) and user
preferences (how users would like their data to be used). S4P suggests that
this separation would allow for some interesting capabilities. A user could
calculate if the the service would meet their own preferences and a service
would know the reverse—do existing policies match the user’s expectations?
S4P proposes this separation would allow a service to evolve their policies in
a way that would remain in compliance with the user’s policy.

2. Blockchain Technologies

DECODE provides a distributed and scalable architecture for decentral-
ized data governance and federated identities. In a decentralized system,
control of information stored or processed on the system is not concen-
trated in any single entity. We explore feasibility of blockchain technology
to implement DECODE’s decentralized backend. Blockchain represents an
immutable and decentralized database that facilitates transparent manage-
ment of data. In this section, we present concepts and components related to
blockchains, and then provide an overview of design approaches with focus
on scalability.
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Figure 1: Blockchain is a linked list of hash pointers.

2.1. Background and Concepts

In this section, we discuss key components of blockchains and related
concepts. To provide concrete examples, we refer to Bitcoin [37]. Bitcoin
is a widely known cryptocurrency based on blockchain that organizes nodes
in a peer-to-peer (p2p) network; any node can join and become part of the
network. If a node receives new information, it broadcasts it to rest of the
network. While all nodes listen to and broadcast information, only special
nodes can append information to the blockchain.

Blockchain. The building block of blockchain is hash pointer (Figure 1). A
hash pointer is simply some information (typically called transaction) along
with a hash of the information. The hash serves to identify the information,
and also allows verification of its integrity. A blockchain is a linked list of
hash pointers, where pointers have been replaced with hash pointers. The
first block in the chain points to a special block called the genesis block. Each
block contains a hash of the previous block and information specific to the
current block. A key result of iterative hashing is that a block implicitly veri-
fies integrity of the entire blockchain before it. Thus given the current head of
the blockchain, any party can independently verify the entire blockchain by
generating hashes from the beginning of the chain up until the end. The final
hash should match that in the head, otherwise the blockchain has been tam-
pered with. Effectively, blockchain can be thought of as a tamper-evident log
where data can be appended to end of the log, and tampering with previous
data in the log can be detected.

Transaction. A transaction specifies some operation on one or more previous
blocks in the blockchain. The result of this transformation, subject to pass-
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ing validity and verification tests, is a candidate block for being appended
to the blockchain. In other words, a transactions represents a function that,
if valid, changes the state of the blockchain. In Bitcoin, a typical trans-
action is transferring money from payer(s) to payee(s)—or spending money
with certain inputs (payers) and certain outputs (payees). Payers and pay-
ees are identified by public keys; the payer digitally signs the transaction.
Special nodes must perform four checks before adding a new transaction
to the blockchain. First, they must verify that the payer is authorized to
conduct this transaction by checking that the transaction’s digital signature
corresponds to public key of the payer. Second, the nodes must verify that
the sum of outputs is equal to the sum of inputs: payers cannot pay out
more than they own. Note that unlike traditional financial transactions, a
Bitcoin transaction’s aggregate input value must be completely consumed; if
the payer wants to only spend part of the input amount and retain the bal-
ance, then he should include himself as one of the payees in the transaction
output. Third, nodes must check that the transaction itself is well-formed,
and that hash of the previous block is correct. This requires verifying all pre-
vious blocks in the blockchain. Finally, nodes must ensure that none of the
inputs is being double-spent since the payer is allowed to spend an amount
only once. This can be verified by traversing back in the blockchain to when
the input value was created, and then traverse forward all the way to the
current transaction—ensuring that the input has not been previously spent.
Note that usually multiple transactions grouped into a ‘block’ are added to
the blockchain rather than individual transactions. Also, for convenience we
use the terms input and output values, but in reality Bitcoin money has no
physical existence: the fact that Bob owns a certain amount corresponds to
the fact that majority of nodes in the system believe this to be the truth.
This brings us to our next topic, consensus.

Consensus. The issue of consensus in distributed systems in the presence of
faulty or malicious nodes long predates its application in cryptocurrencies
and distributed ledgers. In a network with n honest nodes that each receive
input values and share them with rest of the network, the consensus protocol
enables agreement between all n honest nodes on the set of input values
generated by honest nodes. In the Bitcoin context where nodes broadcast
transactions as part of a p2p network, nodes need to reach consensus on
exactly which transactions took place and in what order—that is, the nodes
must agree on state of the blockchain. Consensus is challenging because
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nodes might have different views of blockchain due to latency in propagation
of transactions over the p2p network, nodes randomly failing, and malicious
nodes trying to suppress valid transactions and push invalid transactions to
the blockchain. Most consensus protocols have the concept of a leader. The
leader is responsible for coordinating with other nodes to reach consensus,
and for appending a final, committed value to the blockchain. The leader
is usually effective only for a period of time called epoch, after which a new
leader is elected.

Mining and Incentivization. So far we said that only special nodes can pro-
pose blocks to append to the blockchain. To stop dishonest nodes from
bringing the system to a stall, these nodes should be chosen in a random
way. A common way to enforce random selection of special nodes is through
mining or proof-of-work. In Bitcoin, this involves solving a hash puzzle. To
propose the next block, a node needs to find a random number (nonce) such
that hash of the concatenation of the nonce, the hash pointer to previous
block, and content of the current block falls within a specified range.

H (nonce||prev_hash||tx||tx|| ... ||[tz) < target

Bitcoin miners are busy calculating hashes all the time; if a miner gets
lucky by finding a nonce that satisfies the hash puzzle, it proposes the next
block. The nonce is included in the block and can be trivially verified by
any node. To incentivize miners to solve hash puzzles and propose next
blocks, the system should reward them in some way. In Bitcoin, there are
two kinds of rewards. The miner that solves the puzzle and proposes the
next block gets to pay some amount to itself (block reward). The second
incentive mechanism is transaction fee. Recall that we said that the sum
of input values must be equal to the sum of output values in a transaction.
There is an exception to this rule: the creator of the transaction can make
the output value less than the input value; so a miner that proposes the
current blocks gets the difference as transaction fee.

Forks. If two miners find solutions to hash puzzles and propose next blocks
within a small time interval, nodes will either append block proposed by the
first miner or the second, depending on which one they first received on the
network. This creates a fork—modes having different views of state of the
blockchain. Forks defy consensus; so some mechanism needs to be in place to
resolve such conflicts and get majority of the nodes to agree on state of the
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blockchain. This means that until a resolution has been reached, some miners
will waste resources mining on top of part of the blockchain that might be
eventually discarded (orphaned blocks). Thus it is desirable to minimize forks
to curb wastage of mining power and enable the system to make progress. In
Bitcoin, the rule is that miners should always extend the longest valid branch
of the blockchain. All honest miners are incentivized to follow the same rule
so that their proposed blocks end up on the blockchain and they receive
their reward. To avoid frequent forks, the system automatically parametrizes
hash puzzles in such a way that time between successive blocks (inter-block
time) remains at an average of 10 minutes. To be sure that a transaction is
included in the consensus chain, a node must wait for several confirmations—
announcements from different nodes in the network that the block containing
the transaction has been appended to the blockchain. Usually the heuristic
of 6 confirmations is used.

Script. Bitcoin has a simple stack-based internal scripting for language for
transactions called Script [48]. Scripts are used in transaction outputs to
define what data is needed to spend a transaction, by returning True on the
correct input. For example, the script for a standard Bitcoin transaction
returns True when presented with a valid signture showing evidence of the
private key corrosponding to the public key specified in the script. More
advanced scripts may, for example, check multiple signatures and require
two of three valid signatures representing three keys.

Smart Contract. Script is very limited in its functionality and does not have
features such as while loops, and is not Turing complete. Consequently, other
systems such as Ethereum [1] have created a blockchain with an extended
and Turing complete scripting system, to allow for more use cases. Ethereum
scripts are written in a high-level language (such as Solidity, a Javascript-like
langauge for writing smart contracts) and are compiled to low-level Ethereum
Virtual Machine (EVM) code. In Ethereum, each transaction has a gas cost
associated with it that is calculated based on how many computational steps
a transaction has. Transactions must then be funded with sufficient Ether—
Ethereum’s cryptocurrency token—to cover the gas cost. These scripts are
called smart contracts, because they effectively act as traditional contracts
that are written in computer code rather than natural language. For ex-
ample, it is possible to create a smart contract that defines a loan that a
debtor can withdraw or deposit into, with the interest calculated automati-
cally and the rules enforced by the blockchain network. However, it is also
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possible to create many different kinds of non-financial applications using a
smart contract, to achieve decentralization and transparency. For example,
it is possible to create a decentralized domain name registration system by
defining a smart contract that enables users to register domain names [2].

2.2. Scalable Blockchains

Bitcoin’s transaction throughput depends on block size and inter-block
interval. With Bitcoin’s current block size of 1MB and 10 minute inter-block
interval, the maximum throughput is capped at about 7 transactions per
second. Moreover, a client that creates a transaction has to wait for at least
10 minutes to be sure that the transaction is included in the blockchain. In
contrast, mainstream payment processing companies like Visa confirm trans-
actions within few seconds, and have high throughput of 2000 transactions
per second on average, peaking up to 56,000 transactions per second [3]. Cur-
rent research in the area is focused on developing solutions to significantly
improve blockchain performance, so that it is at least at par with mainstream
payment systems while retaining its decentralized nature. More specifically,
the following aspects of blockchain could be potential performance bottle-
necks (adapted from work by Croman et al. [18]):

e Maximum Throughput: The maximum rate at which the blockchain
can confirm transactions (Bitcoin has 3.3-7 transactions per second).

e Latency: Time to confirm that a transaction is included in the blockchain.
The minimum time for Bitcoin is 10 minutes assuming single confir-
mation; but it is recommended to wait for 6 confirmations to have
high confidence that the transaction will be included in the blockchain,
which translates to latency of about an hour.

e Bootstrap Time: Time taken for a new node to download and pro-
cess part of the blockchain necessary to validate the system’s current
state. In Bitcoin, bootstrap time is linear in the size of the blockchain,
estimated at about 4 days computed on a mid-grade computer [18].

e Transaction Validation: Time taken for a node to validate that a
transaction can spend the inputs. In bitcoin, this requires traversing
back in the blockchain to when the output value referenced by the
inputs was created, and then traverse forward until the current trans-
action is reached—checking that the referenced output value has not
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been previously spent. A recent study [18] estimates that transaction
validation comprises 0.2% of overall cost incurred by all nodes in Bit-
coin.

e Network Bandwidth: How much network bandwidth is consumed by
nodes to share information (transactions, blocks, metadata) with each
other. This is closely related to properties of the consensus mechanism
employed by the system.

e Transaction-Validation Storage: The amount of storage required
per node to enable transaction validation.

e Bootstrap Storage: The amount of storage required for new nodes
that join the network to store (part of the) blockchain to validate state
of the system. In bitcoin, new nodes have to store and validate entire
blockchain history which is currently (June, 2017) about 20GB.

Reparametrization of Bitcoin system metrics, block size and inter-block
interval, can improve performance to a limited extent—estimated at 27 trans-
actions per second and 12 seconds, respectively. However, significant im-
provement in performance requires fundamental redesign of blockchain paradigm.
Next we identify different design themes that improve blockchain scalability.

2.3. Multiple Blocks per Leader

In this approach, the leader appends multiple blocks to the blockchain
until another leader is elected.

Bitcoin-NG. Bitcoin-NG [22] is based on the same trust model as Bit-
coin, but improves performance by breaking up Bitcoin’s blockchain oper-
ation into leader election and transaction serialization. Leader election is
similar to Bitcoin, and performed randomly and infrequently via proof-of-
work. However, unlike Bitcoin where the leader (miner who solved the puz-
zle) can only propose 1 block to append to the blockchain, in Bitcoin-NG
time is divided into epochs and a leader can unilaterally append multiple
transactions to the blockchain for the duration of its epoch which ends when
a new leader is elected. The system has two kind of blocks: keyblocks and
microblocks. Keyblocks contain solution to the puzzle and are used for leader
election. Keyblocks contain a public key which is used to sign subsequent
microblocks generated by the leader. Every block contains a reference to the
previous microblock and keyblock. Fee is distributed between the current
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leader (40%) and the next leader (60%). As in Bitcoin, forks are resolved
by extending the longest branch aggregated over all keyblocks. Note that
microblocks do not contribute to length of a branch as these do not contain
proof-of-work. To penalise a leader that creates forks in the microblocks
generated, a subsequent leader can insert a special poison transaction after
its keyblock that contains header of the first block in the pruned branch as
a proof-of-fraud. This invalidates the malicious leaders reward, a fraction of
which is paid to the reporting leader. Forks can also happen when a new
leader has been elected but the previous leader has not yet heard about it
and continues to generate microblocks. However, such forks are resolved
as soon as announcement of election of the new leader reaches all nodes.
Bitcoin-NG s performance is evaluated against original Bitcoin client on an
emulation testbed comprising 1000 nodes (about 15% of the current oper-
ational Bitcoin network). The study compares Bitcoin and Bitcoin-NG in
terms of various metrics related to systems performance and security while
varying block frequency and block size. While reparametrization improves
Bitcoin s performance, its security deteriorates. Bitcoin-NG achieves similar
performance while retaining security grantees, qualitatively outperforming
Bitcoin [22].

2.4. Sharding Transactions

In this approach, the nodes are organized into groups: each group is
responsible for handling only a subset of transactions (shards).

RSCoin [20] is a permissioned blockchain (where part of the system is
trusted). The central bank controls all monetary supply, while mintettes
(nodes authorized by the bank) manage transactions. Transactions have
identifiers, and each mintette is responsible for a subset (shard) of trans-
actions such that a shard can potentially overlap across mintettes for secu-
rity and reliability. A mintette maintains information about outputs of the
transactions it manages, whether these have been spent and if so in which
transactions. A user who wants to append a transaction to the blockchain
first gets signed clearance from majority of the mintettes corresponding to
each input value in the transaction. Next the user sends the transaction
and signed clearance from input owners to mintettes corresponding to out-
put values in the transaction. The mintettes check validity of the transac-
tions and verify signed evidence from input mintettes that the transaction
is not double-spending any inputs. If the checks pass, the mintettes send
evidence to the user that the transaction will be included in the blockchain
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(this evidence can be used to implicate the mintettes if the transaction does
not appear in the blockchain). The system operates in epochs: at the end
of each epoch, mintettes send all cleared transactions to the central bank
which collates transactions into blocks that are added to the blockchain. As
communication between mintettes takes place indirectly through the user,
RSCoin has low communication overhead and improved performance. The
transaction throughput scales linearly with the number of mintettes.
Elastico [34] is another system that improves performance by sharding
transactions in a permissionless setting, that is assuming a completely de-
centralized system with no trusted component. Nodes in the network are
partitioned into committees, where each committee is responsible for man-
aging a subset (shard) of transactions. Within a committee, nodes run a
byzantine consensus protocol (e.g. PBFT) to agree on a block of transac-
tions. If the block has been signed by enough nodes, the committee sends
it to a final committee. The final committee collates sets of transactions
received from committees into a final block, and runs a byzantine consensus
protocol between its members to get agreement and broadcast the final block
to other committees. The system operates in epochs: assignment of nodes
to committees is valid only for duration of the epoch. At the end of the
epoch, nodes compute solution to a puzzle seeded by a random string gen-
erated by the final committee and sends the solution to the final committee
to be assigned to a committee. As a result, in each epoch a node is paired
with different nodes in a committee managing a different set of transactions.
The number of committees scales linearly in the amount of computational
power available in the system, but the number of nodes within a committee
is fixed. Thus the block throughput scales up almost linear to the size of the
network. As more nodes join the network, transaction throughput increases
without adding to latency as messages needed for consensus are decoupled
from computation and broadcast of final block to be added to the blockchain.
OmniLedger [31] uses RandHound [46]—a decentralized randomness
protocol—to randomly assign nodes to a shard, making it difficult for an
adversary to compromise individual shards. OmniLedger uses a block-DAG
(Directed Acyclic Graph) rather than a blockchain, effectively creating multi-
ple blockchains in which consensus of transactions can take place in parallel.
To realize parallel consensus, dependencies between transactions are iden-
tified from their inputs and outputs. Moreover, transactions are organized
in such a way that the block containing a transaction must be a member
of the blockchain corresponding to the transaction’s inputs. To enable se-
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cure validation of cross-shard transactions—transactions that have inputs or
outputs corresponding to multiple shards—OmniLedger uses an atomic com-
mit protocol across shards. To commit a transaction to the blockchain, the
client first sends the transaction to the network. The leader of each shard
that is responsible for the transaction’s inputs (input shard) must valdiate
the transaction and return a proof-of-acceptance (or proof-of-rejection). The
transaction’s inputs are then considered to be locked. To unlock transaction
inputs, the client collects and sends proof-of-accepts to the output shards,
whose leaders add the transaction to the next block to be appended to the
blockchain. In case the transaction fails the validation test, the client can
send proof-of-rejection to the input shards to roll back the transaction and
unlock the inputs.

2.5. Sharding Proof-of-Work

This is an approach for allowing multiple leaders to extend different parts
of the blockchain by working on different puzzles in parallel.

Bitcoin has a linear process of transaction verification, where all miners
try to solve proof-of-work in parallel. The one that gets lucky proposes the
next block; all miners then get busy mining to propose the next block. The
framework proposed by Boyen et al. [9] parallelizes this process by forgoing
the concepts of ‘blocks” and ‘chain’ in favour of a graph of cross-verifying
transactions. Each transaction validates two previous transactions (its par-
ents), some payload (e.g. cryptocurrency) and proof-of-work. A transaction
can be potentially validated by multiple children nodes. Additionally, each
transaction also carries a reward to be collected by the transaction that val-
idates it. Value of the reward decreases as more nodes directly or indirectly
validate it, thus new nodes have more incentive to validate recent transac-
tions. The system has been shown to have convergence property, that is at
some point there is a transaction that connects to (and thus implicitly ver-
ifies) all transactions before it. As a result of the graph structure, different
branches of the transactions graph can be extended in parallel by miners who
get reward for useful work even for verifying the same transactions. Normal
(non-miner) nodes in the system verify transactions as they receive them.
In addition to standard checks on correctness of proof-of-work and struc-
tural validity of the transaction and its parents, the node also checks that
the transaction is not a double-spend by accepting as valid the well-formed
transaction that has the largest amount of work attached to it (height).
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2.6. Strong Consistency via Collective Leaders

A number of systems employ multiple leaders to collectively and quickly
decide if a block should be added to the blockchain. This offers strong con-
sistency to a client that a submitted block will remain on the blockchain.
Another advantage is that the blockchain remains fork-free, as all leaders
instantly agree on block validity.

ByzCoin [30] improves Bitcoin’s transaction latency by replacing its
probabilistic transaction consistency guarantees with strong consistency. It
builds this design on Bitcoin-NG to achieve high transaction throughput.
Recall that Bitcoin-NG operates in epochs where miners compete to find
solution to a puzzle, and the winner becomes the current leader that ap-
pends blocks to the blockchain for duration of epoch until a new leader is
announced. The system has two kinds of blocks: keyblocks announce a
new leader and includes proof-of-work, while microblocks are generated by a
leader for duration of the epoch to be appended to the blockchain. ByzCoin
modifies how keyblocks are generated: a consensus group, instead of a solo
leader, generates a keyblock followed by microblocks. The consensus group
is dynamically formed by a window of recent miners. Each miner has voting
power proportional to the number of mining blocks it has in the current win-
dow, which is proportional to its hash power. When a miner finds solution to
the puzzle, it becomes a member of the current consensus group and receives
a share in the current window which moves one step forwards (ejecting the
oldest miner). ByzCoin uses the same incentive model as Bitcoin, however
instead of the most recent miner receiving all reward and fee, it is shared
between members of the consensus group in proportion to their shares. The
cosensus group is organized into a communication tree where the most recent
miner (the leader) is at the root. The leader runs the Practical Byzantine
Fault Tolerant (PBFT) protocol [13] to get all members to agree on the
next microblock. However, it replaces PBFTs O(n?) MAC-authenticated
all-to-all communication with a primitive called scalable collective signining
(CoSi) that reduces messaging complexity to O(n). The outcome of running
two rounds of PBFT with CoSI is a fixed 64 byte collective signature that
proves that at least two-thirds of the consensus group members witnessed and
attested the microblock. A node in the network can verify in O(1) that a
microblock has been validated by the consensus group. This design addresses
a limitation of Bitcoin-NG where a malicious leader can create microblock
forks: in ByzCoin this would require two-third majority of consensus group
members to be malicious which is unlikely. Similarly, Bitcoin-NG suffers
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from a race condition where an old leader that has not heard about the new
leader may continue to generate microblocks which will be eventually or-
phaned (assuming that the new leader mined on top of older microblocks).
In ByzCoin, consensus group members ensure that a new leader builds on
top of the most recent microblock. In experiments with simulated consensus
groups, a consensus group of 144 miners (formed over 24 hours of mining)
have transaction latency less than 20 seconds on blocks of size IMB (Bitcoin
s current maximum size). If block size in the former setting is increased to
32MB, transaction throughput reaches 974 transactions per second with a
transaction latency of 68 seconds. For a consensus group of 1008 members
(formed over a week of mining) with 8MB block size has transaction latency
of 90 seconds.

Similar to ByzCoin, PeerConsensus [21] also achieves strong consis-
tency by allowing previous miners to vote on blocks. A Chain Agreement
tracks the membership of identities in the system that can vote on new blocks.
The difference between PeerConsensus and ByzCoin is that PeerConsensus
uses a standard Practical Byzantine Fault Tolereance (PBFT) protocol [13],
which requires participants to receive O(n)-size messages, whereas ByzCoin
uses a modified PBFT protocol using collective signatures (CoSi) that only
requires participants to receive O(1)-size messages.

Algorand [35] is a new type of blockchain that attempts to achieve Sybil-
resistance in a decentralised way without the use of proof-of-work, with strong
consistency. It proposes a faster graded Byzantine fault tolerance protocol,
that allows for a set of nodes to decide on the next block. One key aspect
of Algorand is that these nodes are selected randomly using algorthimic ran-
domness based on input from previously generated blocks. When validating
nodes sign new blocks, they destroy the key which was used to sign it, intro-
ducing a notion of forward integrity that makes it difficult for an adversary
to retrospectively corrupt nodes that have destroyed their keys.

Hyperledger Fabric [10] is a permissioned blockchain system designed
by IBM, that allows organizations to setup their own blockchain networks
to run smart contracts. It is designed around the idea of a ‘consortium’
blockchain, where a specific set of nodes are designated to validate transac-
tions as part of a consortium, rather than random nodes in a decentralized
network. Smart contracts are called chaincode in Hyperledger Fabric, and
each chaincode has its own set of endorser nodes that re-execute transactions
for chaincode received from submitters of transaction, to validate that they
are valid and correct. A consensus service then orders the endorsed transac-
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tions, produces an ordered stream of transactions and filters out transactions
that are not endorsed by enough endorsers. Hyperledger Fabric uses modular
consensus, meaning that the consensus protocol used by endorsers to decide
which transactions are valid is replaceable depending on the requirements.
For example, Apache Kafka or SBFT (a simple implementation of Practical
Byzantine Fault Tolerance protocol) may be used.

3. Privacy

DECODE is a decentralized data repository that provides privacy and
transparency through ABC (Attribute Based Cryptography) and other pri-
vacy enhancing technologies. As the platform supports multiple, diverse
contexts of data ownership, DECODE supports privacy by design to enable
flexible and extensible data governance. This section presents a survey of
privacy enhancing technologies relevant to blockchains, and DECODE archi-
tecture overall.

3.1. Zero-Knowledge Protocols

Zero-knowledge proofs represent a class of protocols that allow a prover
to demonstrate to a verifier knowledge of some secrets that fulfils some state-
ments, without disclosing the secrets themselves. These proofs can be used
for a variety of applications, from data aggregation and smart metering to
verifiable computations.

Ezample of usages of zero-knowledge protocols. Borges et al. [8] propose a
set of protocols between a provider, a user and a tamper-resistant piece of
hard- ware (in this case, an electricity meter) to ensure the provider that
the bill provided by the user is correct while preserving the user’s privacy.
The user computes the total bill from measurements provided by the meter
according to the provider’s policy. The user then sends it to the provider
along with a zero-knowledge proof ensuring correctness of the bill’s compu-
tation. Specifically, during the billing period, the meter sends homomorphic
commitments of the readings to the user along with a valid signature on
those commitments. At the end of the billing period, the user employs the
policy signed by the provider and the meter’s commitments to compute the
total fees. Then, the user sends to the provider the meter’s commitments,
a commitment to the total price, and a zero-knowledge proof stating that
she knows the opening of the signed commitments, the opening of the com-
mitment to the total price, and the required signatures. Next, the provider
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verifies the signatures, verifies the proof, and use the homomorphism of the
commitments to aggregate them to the price. Finally, the provider checks
the commitments’ openings to the total fees. Consequently, the provider is
assured that the user paid the correct amount of fees, without seeing the
user’s current consumption.

Private verifiable computations. Pinocchio [40] is an efficient system for ver-
ifiable computations. It lets a client outsource resource-intensive compu-
tations to a well-provisioned server while verifying correctness of its com-
putations by performing only a small amount of work. Pinocchio employs
zero-knowledge proofs, to allow some inputs to stay private. A key strength
of this scheme is that the proof-of-correctness is constant size regardless of the
computation performed. Similar works in the area of verifiable computations
are [24, 41, 25].

3.2. Priwacy on Blockchain

Next we review key researches in privacy enhancing technologies relevant
to blockchains.

A fully anonymous currency transaction. Zerocoin [36] presents an extension
to Bitcoin that allows fully anonymous currency transaction. The main ob-
jective of this scheme is to break linkability between individual Bitcoin trans-
actions without relying on trusted third parties. Zerocoin uses Bitcoin as an
append-only bulletin board and as a backing currency. Zerocoin identifies
coins by commitments ¢ of a serial number s and an opening value r. Once
a user wants to spend a coin, she reveals s and provides a zero knowledge
proof-of-knowledge of r for any ¢ among all coins commitments in the ledger
(co,---,¢n_1). The scope of this zero knowledge proof is to guarantee that the
users knows the opening of one of the commitments ¢ € (¢, ..., c,—1) (With-
out revealing which one). Moreover, in order to prevent double-spending, the
user is also required to show the coin’s serial number s, so that the ledger can
verify it has not appeared in a previous transaction. A significant limitation
of Zerocoin is the difficulty to efficiently prove that a commitment c is part
of a given set (cg,...,c,—1). To solve this problem the authors employ a
“public” one-way accumulator based on, strong RSA, A. Therefore, all com-
mitments have to be prime numbers from a given interval. This also causes
the zero knowledge proof to involve a double-discrete logarithm proof, which
requires large proof sizes (size that exceeds 45KB).
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Improving performances. To address the limitations of Zerocoin, Pinocchio
Coin [19] shows a variant to Zerocoin that use elliptic curves and bilinear
pairing to greatly improve efficiency. Pinocchio Coin reduces the proof size
from about 45KB to 344B.

A fully decentralised private cryptocurrency. Zerocash [45] is a fully decen-
tralized digital currency supporting strong privacy guarantees. It presents
the notion of Decentralised Anonymous Payment (DAP) scheme based on
zk-SNARKSs. As a result, unlike systems discussed previously, Zerocash also
hides the amount and metadata of the transaction. A DAP scheme is a tu-
ple of algorithms (setup, CreateAddress, Mint, Pour, VerifyTransaction, Re-
ceive). In Zerocash, the setup is executed by a trusted party, only once. The
trust in the setup algorithm is needed for the transaction non-malleability
and balance properties but not for the anonymity properties. Each user gen-
erates an address key pair (addry, addrg,) during the Create Addresst phase.
The public address addr,; is used to receive coins and the secret key addrg
is used to redeem coins. Next, the mint operation creates a coins that can
be spent only with knowledge of an associated key agz,. A corresponding
mint transaction txMint is appended to the ledger only if the user has paid
v BTC. Due to the nested nature of the Zerocash commitments, anyone can
verify that the commitment in txMint is a coin commitment of value v but
cannot discern the owner (by learning the address key a,;) or the coin’s serial
number. These coins are spent using the pour algorithm, which takes a set
of input coins, to be consumed, and “pours” their value into a set of fresh
output coins: we can say that Zerocash do not “transfer” ownership of coins
(contrarily to Bitcoin), but instead it destroys old coins to create new ones.
When creating a pour transaction, the user can also specifies a nonnegative
amount vy, that is publicly declared, as a classic Bitcoin transaction. One
of the key points of Zerocash is that the pour transaction reveals no infor-
mation about the value of the consumed coin, nor which coin commitment
corresponds to the consumed coin, nor the address public keys to which the
two new fresh coins are targeted. The VerifyTransaction algorithm allows
the ledger to verify the zk-SNARKS proofs in order to accept or decline an
upcoming transaction, and finally, the Receive algorithm is used to scan the
ledger and retrieve unspent coins paid to a particular user address.

A private and decentralised smart contract system. Built upon Zerocash,
Hawk [32] is a decentralised smart contract system that enforces privacy
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on the transaction stored on the ledger: it allows transfers of money with
programmability. In addition, Hawk allows a programmer to write a smart
contract with little worry of the underlying cryptographic constructions. The
Hawk compiler compiles the program to create a protocol between the user
and the ledger. The resulting contract contains two parts. The first part,
®priv, 1s private and takes the parties’ inputs and performs computations to
determine the payee. The second part is the public part, ¢, which deals
with public data. Hawk smart contract involves a special party called the
manager who is trusted to not disclose user’s private data but cannot com-
promise the contract’s correct execution. Hawk achieves this by employing
three primitives. First, the freeze primitive allows parties to commit coins
and data (the committed coins are “frozen” in the contract). In the sec-
ond step, compute, parties open their commitments to the manager that
determines the payout distribution by running ¢,,;,. Finally, the finalise
primitive allows the manager to submit to the blockchain the result of ¢,
along with a proof of correctness of its computation. The public part of the
contract ¢, is run in order to check the correctness of the manager’s inputs
and to redistribute the previously frozen coins. Hawk also introduces three
time periods 17, Ts, T5. All parties have to complete the freeze operation by
time 7} and the manager is required to run the compute operation by time
T,. Finally, users can reclaim their frozen coins to the blockchain after time
T3. These timeouts permits to enforce financial fairness by redistributing the
frozen coins accordingly in case one of the parties aborts.

3.3. Anonymous Credentials Systems

Anonymous credential systems allow users to selectively disclose certain
attributes (or functions of these attributes) about themselves, without re-
vealing their identity. In fact, these credentials are unlinkable: a verifier
cannot tell that the same credential is involved in two different transactions

Anonymous credentials’ schemes have been an active area of research
[11, 12, 16, 15]. In this survey we focus on Anonymous Credentials Light
(ACL) [5] due to its efficiency and single-usage (that is, credentials can be
used only once). ACL leverages hardness of the decisional Diffie-Hellman
problem, and has been designed to work in low-resource settings such as
mobile phones and RFIDs.

ACL employs blind signatures to enable users to get a particular attribute
signed by an authority. Specifically, ACL modifies Abe’s blind signature
scheme [4] to provably encode attributes in the Abe signature. The idea

25



is that only the signer possesses a private key x, associated with a public
key y = ¢* that allows to sign attributes. Moreover, ACL is a single-use
anonymous credential scheme (in contrast to multi-use schemes [11, 15]) : if
the credentials are used again, the user’s identity is revealed and she can be
penalised. This property can be applied to detection of double-spending in
the context of blockchain transactions (Section 2).

3.4. Attribute-Based Cryptography

Attribute-based cryptography (ABE) allows schemes in which each user
is identified by a set of attributes instead of by an unique identity string.
Then, some functions of those attributes are used to determine whether each
ciphertext can be decrypted or not [14]. Exploring these principles, Goyal
et al. [26] present the concept of Key-Policy Attribute-Based Encryption
(KP-ABE) for fine-grained sharing of encrypted data and demonstrates its
applicability to sharing of audit-log information. More specifically, cipher-
texts are associated with sets of descriptive attributes and users’ keys are
associated with policies.

Then, Waters et al. [47] introduced Ciphertext-Policy Attribute Encryp-
tion (CP-ABE): a system for realising complex access control on encrypted
data. The purpose of this construction is to keep confidential encrypted data
even if the storage server is untrusted, while remaining secure against col-
lusion attacks. The innovation of CP-ABE is that their attributes are used
to describe users’ credentials, and the party encrypting data determines who
can decrypt them. In other words, it is the encryptor that decides who can
have access to the encrypted data, and not the key-issuer (as in KP-ABE).
Therefore, CP-ABE can be used to handle secure logs by encrypting it with
attributes which match recipients’ attributes. Works on CP-ABE have been
continued by Waters et al. [47] in order to present a solution allowing any
encryptor to specify access control in terms of any access formula over the
attributes in the system. Moreover, their methodology, ciphertext size, en-
cryption, and decryption time scale linearly with the complexity of the access
formula.

Multi-authority ABE allows independent authorities to monitor attributes
and distribute secret keys. Therefore, an encryptor can encrypt a message
such that a user can only decrypt it if he has enough attributes from each
authority. An example of multi-authority ABE has is presented by Chase et
al. [14] by proposing a scheme that handle any polynomial number of author-
ities and that can tolerates an arbitrary number of corrupt authorities. In

26



the work of A. Lewko and B. Waters [33], any party can become an author-
ity and there is virtually no need for any global coordination (except for the
creation of an initial set of common parameters). In fact, anyone can simply
act as an authority by creating a public key and issuing the corresponding
private keys to different users reflecting their attributes. Successively, a user
can encrypt data over attributes issued from any chosen set of authorities.

Finally, Jung et al. [28] group many of the previous concepts to achieve
anonymous cloud data access and fine-grained privilege control by using
multi-authority in cloud computing systems. The basic idea behind their
scheme is that users’ pseudonyms are tied to their private key, but the key
generators never know about these keys. Therefore, they are not able to link
multiple pseudonyms belonging to the same user or to recognise the same
user in different transactions.
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