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1 Introduction

In DECODE, we propose an Attribute Based Cryptography access model in which some
or all of the data, some or all of the rules, and even some or all of the credentials may
be stored in a distributed manner on a ledger. Whenever data, rules and credentials
meet at a DECODE node, we determine whether it may be released. This poses several
challenges the DECODE project aims to address, providing answers that are informed
by previous research like ABC4trust (FP7-ICT-2009-5, proj. nr. 257782) and Sentinels
MobileIDM (IIPVV).

This task considers four questions about the use Attribute Based Cryptography in
DECODE.

1. How to securely issue and use credentials which are stored in the distributed ledger?

2. How to exert control over such remotely or rather distributed stored credentials?

3. How to combine attribute-based encryption and attribute based credentials to en-
force the secure storage of data on the distributed ledger while allowing the right
entities to access data?

4. How to authorize transactions on the distributed ledger using anonymous creden-
tials?

This task is about a decentralized model for Attribute Based Cryptography (ABC) and
digital identity management and identifying functional technologies that can be used for
the project.

In the first deliverable of the task; initial Decentralized models for data and identity
management: Blockchain and ABC [33], we highlighted the relevant areas for research
in the domains of attribute based cryptography, identity management and distributed
ledgers. An overview of current state of the art technologies was provided and, when
available, references to software implementations of these technologies as relevant to
DECODE were included.

In this deliverable we also follow up on the Coconut credential system [53], which was
initially proposed in [33]. We now provide an overview of the system and illustrate how it
is being implemented in DECODE.

We also address the challenges set out in the previous deliverable regarding the
use of attribute based cryptography as access control. We investigate Attribute Based
Encryption as a means of access control of data in distributed systems like DECODE.
Attribute Based Credentials are shown be usable a means of access control on the ex-
ecution of smart contracts. We investigate the requirements of making ABCs a general
building block access control of execution in distributed ledger technology.

Finally we show a contract for privacy-preserving petitions in DECODE.

1.1 Document Outline

Then sections 2 and 3 will address the specific challenges of Identity Management and
Access Control respectively. Section 2 provides an overview of the Coconut Credential
System developed for DECODE. Section 3 investigates two means of doing decentralized
access control using Attribute Based Cryptography, and shows of a method for privacy-
preserving petitions in DECODE.

H2020-ICT-2016-1 2 D3.8



2 Decentralized Identity Management

This section describes the Coconut credential system [53] as is used in DECODE.
We provide a general overview of Coconut authored by Shehar Bano. The text in this

section was published earlier at Bentham’s Gaze. Some adaptations to the formatting
have been made in order to be part of this document.

2.1 Coconut: Threshold Issuance Selective Disclosure Credentials with
Applications to Distributed Ledgers

Selective disclosure credentials allow the issuance of a credential to a user, and the
subsequent unlinkable revelation (or ‘showing’) of some of the attributes it encodes to a
verifier for the purposes of authentication, authorisation or to implement electronic cash.
While a number of schemes have been proposed, these have limitations, particularly
when it comes to issuing fully functional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. Some entrust a single issuer with the creden-
tial signature key, allowing a malicious issuer to forge any credential or electronic coin.
Other schemes do not provide the necessary re-randomisation or blind issuing properties
necessary to implement modern selective disclosure credentials. No existing scheme
provides all of threshold distributed issuance, private attributes, re-randomisation, and
unlinkable multi-show selective disclosure.

We address these challenges in our new work Coconut - a novel scheme that supports
distributed threshold issuance, public and private attributes, re-randomization, and mul-
tiple unlinkable selective attribute revelations. Coconut allows a subset of decentralised
mutually distrustful authorities to jointly issue credentials, on public or private attributes.
These credentials cannot be forged by users, or any small subset of potentially corrupt
authorities. Credentials can be re-randomised before selected attributes being shown to
a verifier, protecting privacy even in the case all authorities and verifiers collude.

2.1.1 Applications to Smart Contracts

The lack of full-featured selective disclosure credentials impacts platforms that support
‘smart contracts’, such as Ethereum, Hyperledger and Chainspace. They all share the
limitation that verifiable smart contracts may only perform operations recorded on a pub-
lic blockchain. Moreover, the security models of these systems generally assume that
integrity should hold in the presence of a threshold number of dishonest or faulty nodes
(Byzantine fault tolerance). It is desirable for similar assumptions to hold for multiple
credential issuers (threshold aggregability). Issuing credentials through smart contracts
would be very useful. A smart contract could conditionally issue user credentials depend-
ing on the state of the blockchain, or attest some claim about a user operating through
the contract - such as their identity, attributes, or even the balance of their wallet.

As Coconut is based on a threshold issuance signature scheme, that allows partial
claims to be aggregated into a single credential, it allows collections of authorities in
charge of maintaining a blockchain, or a side chain based on a federated peg, to jointly
issue selective disclosure credentials.

2.1.2 System Overview

Coconut is a fully featured selective disclosure credential system, supporting threshold
credential issuance of public and private attributes, re-randomisation of credentials to
support multiple unlikable revelations, and the ability to selectively disclose a subset of
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Figure 1: The Coconut architecture.

attributes. It is embedded into a smart contract library, that can be called from other
contracts to issue credentials. The Coconut architecture is illustrated below. Any Coconut
user may send a Coconut request command to a set of Coconut signing authorities; this
command specifies a set of public or encrypted private attributes to be certified into the
credential (1). Then, each authority answers with an issue command delivering a partial
credentials (2). Any user can collect a threshold number of shares, aggregate them to
form a consolidated credential, and re-randomise it (3). The use of the credential for
authentication is however restricted to a user who knows the private attributes embedded
in the credential—such as a private key. The user who owns the credentials can then
execute the show protocol to selectively disclose attributes or statements about them (4).
The showing protocol is publicly verifiable, and may be publicly recorded.

2.1.3 Implementation

We use Coconut to implement a generic smart contract library for Chainspace and one
for Ethereum, performing public and private attribute issuing, aggregation, randomisation
and selective disclosure. We evaluate their performance, and cost within those platforms.
In addition, we design three applications using the Coconut contract library: a coin tum-
bler providing payment anonymity, a privacy preserving electronic petitions, and a proxy
distribution system for a censorship resistance system. We implement and evaluate the
first two former ones on the Chainspace platform, and provide a security and performance
evaluation. We have released the Coconut white-paper, and the code is available as an
open-source project on https://github.com/asonnino/coconutGithub

2.1.4 Performance

Coconut uses short and computationally efficient credentials, and efficient revelation of
selected attributes and verification protocols. Each partial credentials and the consoli-
dated credential is composed of exactly two group elements. The size of the credential
remains constant, and the attribute showing and verification are O(1) in terms of both
cryptographic computations and communication of cryptographic material - irrespective
of the number of attributes or authorities/issuers. Our evaluation of the Coconut primitives
shows very promising results. Verification takes about 10 ms, while signing an attribute is
15 times faster. The latency is about 600 ms when the client aggregates partial creden-
tials from 10 authorities distributed across the world.

2.1.5 Summary

Existing selective credential disclosure schemes do not provide the full set of desired
properties needed to issue fully functional selective disclosure credentials without sacri-
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ficing desirable distributed trust assumptions. To fill this gap, we presented Coconut which
enables selective disclosure credentials - an important privacy enhancing technology -
to be embedded into modern transparent computation platforms. The paper includes an
overview of the Coconut system, and the cryptographic primitives underlying Coconut; an
implementation and evaluation of Coconut as a smart contract library in Chainspace and
Ethereum, a sharded and a permissionless blockchain respectively; and three diverse
and important application to anonymous payments, petitions and censorship resistance.

We have released the Coconut white-paper, and the code is available as an open-
source project on GitHub. 2

3 Access Control

This section provides three applications of Attribute Based Cryptography in DECODE.
In the first subsection we have a comparative review of the state-of-the-art in Attribute
Based Encryption, as it is relevant to the DECODE project. The second subsection in-
vestigates the general requirements to use Attribute Based Credentials as a means of
access control on the execution of smart contracts in Distributed Ledger Technology. The
final subsection provides the details of the smart contract used in the DECODE petition
pilot.

3.1 Enforcing Access Control with Attribute-Based Encryption

Whereas attribute-based credentials (ABCs) may be used for authentication and proving
possession of attributes, attribute-based encryption (ABE) [48] can be used as a means
to enforce access control on the private data of a participant, i.e. the participant encrypts
the private data under an access policy such that other participants in the system can
only decrypt the data if they possess a set of attributes (and their associated keys) that
satisfies the policy. This means that ABE provides us with a way to implement attribute-
based access control on a cryptographic level. One of the features of ABE is that the
setup can be decentralized: instead of allowing one authority to control all of the keys
associated with attributes, multiple authorities generate the keys associated with their
own unique set of attributes. The idea is that the user can authenticate towards the
authority by showing his attribute-based credential, and therefore prove possession of
the associated attribute, for which the authority then generates a key. However, how this
is done is not entirely trivial, which means that further investigation is required in order to
implement them in a joint fashion. In order to determine whether this is possible we first
have to find a suitable scheme that provides functionality that DECODE requires.

3.1.1 Key-policy or ciphertext-policy ABE

In general, attribute-based encryption comes in two flavors: the access policy can be
imposed on the keys and on the ciphertexts. In the former case, the access policies are
specified and encoded in the secret keys by the key generation authority. The idea is that
such a key can be received by a participant in the system when he possesses a set of
attributes that satisfies the access policy. It is therefore also called key-policy attribute-
based encryption (KP-ABE) [24]. In KP-ABE, the ciphertexts are associated with a set
of attributes, which can be specified by the encryptor, and another participant can only
decrypt these ciphertexts when he possesses a key associated with an access policy that

2The Coconut project is developed, and funded, in the context of the EU H2020 Decode project, the
EPSRC Glass Houses project and the Alan Turing Institute.
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is satisfied by the attributes associated with the ciphertext. In ciphertext-policy attribute-
based encryption (CP-ABE) [8], the opposite is true. If we associate the ciphertexts with
access policies, then the encryptor gets to specify the access policy and therefore who
can decrypt the ciphertexts. Then, the secret keys are associated with attributes that
the participant possesses, and a ciphertext can be decrypted whenever the associated
access policy is satisfied by the set of attributes associated with the key. Because CP-
ABE provides us with the functionality that we need to enforce access control, it is the
more natural option for DECODE.

In ABE schemes, there are often restrictions on the access policies. These access
policies are often represented as Boolean formulas, and ideally, we would like to allow for
any Boolean formula to be integrated in the ciphertexts. However, not all schemes allow
for this level of expressiveness. Some only allow for AND-statements [16], while others
allow for all possible access policies to be integrated in the keys [37]. An important aspect
that is related to this is the monotonicity of access policies, which means that the Boolean
formula can either consist of negations or not. If we do not allow for negations, we say that
the access policies are monotone [24]. If we do, then they are non-monotone [37]. While
the non-monotonicity of access policies seem like a desirable property, we argue that it is
not. Recall that we aim to use ABE in combination with ABC, i.e. participants prove their
right to a certain secret key towards an authority by showing the associated credential.
Whereas proving possession of an attribute is trivial in this case, proving the lack thereof
is absolutely not. Because of this reason, we prefer monotone access structures, while
still remaining as expressive as possible such that all access policies can be represented
by monotone Boolean formulas.

Another property that is somewhat related to this is the set of attributes for which we
generate secret keys. In ABE, this is called the universe of attributes [48]. While in the
majority of the schemes [15, 16, 24, 30, 36, 37, 42, 48, 57, 60], this universe is fixed
after the setup and the size of the universe is polynomially bound in the security param-
eter, there are also schemes that allow for more flexibility in the generation of system
parameters [8, 24, 44, 48]. In particular, these constructions are practically unbounded
in the number of attributes, and is therefore called a large universe construction, while
its bounded counterpart is called a small universe construction. Because large universe
constructions allow us to trivially add new attributes without having to run the entire setup
again, and therefore provides a level of dynamicity that DECODE requires, we prefer large
universe constructions over their small counterparts. Moreover, the fact that the system
parameters are independent on the number of attributes also adds a level of scalability
that small universe constructions do not enjoy.

3.1.2 Collusion resistance and security

In traditional public-key encryption schemes, semantic security is an important principle
in ensuring that ciphertexts cannot be decrypted by unauthorized users. Whereas se-
mantic security only provides security against attacks on the ciphertexts in the form of
chosen-plaintext attacks, in attribute-based encryption, this type of security is not suffi-
cient. In ABE, the users each have their own set of keys associated with the attributes
they possess. While it might be the case that, individually, they cannot decrypt some
ciphertext, it might be the case that a subset of the users can combine their keys in order
to decrypt the ciphertext by colluding. Schemes that provide security against this type of
attack are called collusion resistant.
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3.1.3 Decentralization

While the most basic version of ABE requires a single trusted third party to generate the
keys, it is also possible to distribute the trust across multiple parties, which is called multi-
authority attribute-based encryption (MA-ABE) [13]. Whereas some schemes require
either a central authority (such as [13] or communication between all of the authorities
during the key generation [29], others are entirely decentralized after the global param-
eters are generated [30]. Because DECODE aims for the decentralization of trust, it is
therefore also logical that access control is enforced in a decentralized setting, i.e. we
should opt for a fully decentralized MA-ABE scheme.

In decentralized ABE, we allow for corruption of authorities to some extent. In most
schemes, we either allow that almost all (except one or two) authorities may be corrupt
without losing security guarantees. Other than actively attempting to decrypt ciphertexts,
authorities might infringe upon other privacy rights of the participants. In MA-ABE, par-
ticipants are identifiable with a global identifier GID, which is used to link keys to one
participant. However, showing this GID to an authority opens up the possibility of a linka-
bility attack: authorities can collude and link a set of attributes to the same GID. In order
to prevent against this type of attack, there have been several proposals for anonymous
key issuance and blind key generation algorithms [14, 25, 39].

3.2 Revocation and other dynamic properties

Because the basic version of ABE does not satisfy any dynamic properties other than the
level of dynamicity that large universe constructions provide, we might want to add a level
of dynamicity in terms of revocation, because in DECODE, we might require that users
are revoked. DECODE specifies that attributes are of a temporal nature, and attribute-
based credentials may expire as well, which means that keys associated with one sin-
gle attribute need to be revocable as well. Whereas in traditional public-key encryption
schemes, we can simply blacklist keys, this is not an option for ABE, as all messages
are encrypted under public keys for which holds that the private counterparts are held
by more than one participant [38]. In literature, there are two generic solutions to this
problem: direct or indirect revocation of users [7].

While the word ‘directly’ seems to imply that keys can be revoked in an immediate
fashion, it actually specifies how revocation is implemented: either directly in the cipher-
text or indirectly by re-encrypting the ciphertexts and renewing (a part of) the keys. In
the former case, we do not need any communication between the key generation au-
thorities and the users [9, 29, 52], while in the latter, we do [17, 40, 47, 60]. Because
direct revocation does not provide us with a trivial way to revoke keys on an attribute
level, it is less suitable for DECODE. Moreover, as directly revocable approaches require
the list of participants to be public, as well as the revocation status, there might be some
privacy issues related to this list. Another drawback is the scalability of such systems.
The ciphertexts grow at least logarithmically in the number of users in the system, while
its indirectly revocable counterparts keep their usual size. For these reasons, we prefer
indirectly revocable ABE over its direct counterpart.

Other than revocable properties, we also need other dynamic properties. For in-
stance, DECODE allows anyone to join the network and host a node. We would also like
to implement this the decentralized ABE setting, i.e. any authority can join the scheme.
In order to make this possible, we have to require that no inherently confidential param-
eters are generated in the global setup (which is the case in schemes such as [30]).
This means that we cannot use any scheme that utilizes composite-order groups, but we
cannot use any scheme that divides the generation of the master secret key across the
authorities in some fashion (e.g. [13, 14]).
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3.2.1 ABE for DECODE

In short, for DECODE we require an ABE scheme that is ciphertext-policy based, in
which the policies are expressive but monotone, and the universe of attributes is large.
Moreover, we also require that the key generation is fully decentralized and that the key
issuance protocol is anonymous. Finally, the scheme has to provide some revocation
functionality in order to make it truly compatible with the ABCs. If we consider the exten-
sive survey in [55], we can conclude that such a scheme does not exist. However, there is
one scheme that satisfies almost all properties: the scheme as proposed by Rouselakis
and Waters in [45] satisfies almost all properties, but does not protect the privacy of the
users towards the authorities in the form of unlinkability, and it does not provide any re-
vocation functionality either. Because of the homomorphic properties of the scheme, we
are confident that such functionality can be implemented by exploiting the generic design
of revocation in [47].

Nevertheless, whereas this scheme satisfies almost all conditions that we formulated,
there are also some issues that we have not taken into account yet, mostly related to se-
curity, but also the storage and computational costs. While the scheme is secure against
chosen-plaintext attacks, we cannot use the generic methods as described in [12, 59]
to obtain security against chosen-ciphertext attacks. We can use other generic methods
that apply non-interactive zero-knowledge proofs in order to achieve the same security
guarantees [31, 35, 46], but these generally lead to more expensive protocols. More-
over, the [45] scheme has a problem that many other (but certainly not all (e.g. [2])) ABE
schemes have, i.e. the computational costs of the scheme depends heavily on the num-
ber of attributes and therefore becomes too expensive to run on smartphones and other
IoT devices [56]. For this reason, we think that the resulting scheme is too inefficient
in practical setups such as DECODE, which are supposed to be smartphone and IoT
friendly.

Furthermore, we can imagine that some of the attributes that we want to use in DE-
CODE have many possible values. For instance, the age of a user, or perhaps even the
date of birth, which are examples of range attributes. Because in many ABE schemes the
universe is small, we have to define a public parameter for each value of each attribute.
While this is generally not a problem in large universe constructions (and this would be
something we avoid altogether in choosing a large universe construction for DECODE),
it does become an issue when a user attempts to encrypt a ciphertext under a policy that
specifies an age range or range of dates spread across several years. If the ciphertexts
grow in the number of these attributes, they potentially become extremely large, which
is the case in the [45] scheme as well. In order to mitigate this problem, we can use
generic conversion methods as proposed in [5] such that the ciphertexts still grow in the
number of values, but only logarithmically, or we can solve this issue altogether by using
a large-universe ABE scheme with constant-size ciphertexts [1, 6, 15, 20].

3.2.2 Conclusion

Because there are, to the best of our knowledge, no schemes that satisfy all of the prop-
erties that we require for DECODE, and because the best alternative scheme, namely
the [45] scheme, has its own disadvantages that makes it less than ideal for DECODE,
we believe that the perfect scheme does not exist yet. For this, there are several reasons:

• There are no efficient schemes that take access policies that denote ranges into
account;

• There are no efficient and secure revocation techniques;
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• There are some schemes that have constant-size ciphertexts and fast decryption
algorithms, but they do not satisfy other desirable or even necessary properties.

While there are some schemes that have constant-size ciphertexts and fast decryp-
tion algorithms, there is only one that also supports large universes of attributes and
monotone, expressive access policies, namely the scheme that is described in [1] and
instantiated in [55]. However, this scheme is centralized and has large sets of secret
keys.

Because of the lack of a truly suitable scheme, we conclude that more research has
to be conducted in order to overcome some of the issues as described in this work.

3.3 Credential Disclosures as Access Control Mechanism in Smart Con-
tracts on Public Distributed Ledger Technologies

3.3.1 Introduction

In this section we investigate the possibility of using Attribute Based Credentials [4, 10,
11] as a means of access control [49–51] in the execution of Smart Contracts [54] on
Distributed Ledger Technology systems.

Initially this seems straightforward. We can use existing implementations of Attribute
Based Credentials (e.g. [53],[27] or [28]), and translate the code for verification of cre-
dentials into code that runs as a Smart Contract on a DLT system.

Users will have a wallet-application with some Credentials issued in the existing sys-
tem. For example, users may have a credential issued by their municipality with their
name, address and date of birth as attributes. They can use their wallet to create a zero-
knowledge proof: proving that they have such a credential, which contains the attribute
that they live on ‘main street’, while keeping all the other attributes hidden.

This zero knowledge proof then may be used as an input for application that runs on
a DLT. The application could for example be: a register where neighbors can announce
a party or a barbecue, and everyone who is able to prove that they live in that street may
be able to veto this event.

The main challenge arises from the inability to run interactive protocol on a Distributed
Ledger system. The attribute based credential protocols [4] require a short, but interactive
session between the user and the disclosing party to guarantee freshness of the proof.
Freshness of disclosure proofs is required to make sure that the credentials shown to the
smart contract are not replayed from a previous session. Since the DLTs we consider
in this section are public systems, previous proofs will be available, and thus not trivially
usable for an access policy.

In this section we propose three features present in most DLTs to be able to generate
a nonce (‘number only used once’) that can be used as a proxy for the freshness.

• disclosure proofs must be bound to the change of global state (or equivalent proxy),
• disclosure proofs must be bound to a specific contract and a specific method,
• all inputs and parameters to that change are bound to the disclosure, and
• if the privacy of users is not affected (beyond the notion of (digital) identity that is

inherent to the specific DLT system), disclosures should be bound to that identity.

We give example code of using these requirements in a Solidity [21] contract. This
argues for the feasibility of actually using ABCs as an access control mechanism, even
on (public) DLTs.

We do note that the practical differences between DLTs can still have a lot effect on
the security and user experience. In particular to the availability of the service provided
by smart contract.
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Finally, since it is in line with the DECODE ambition [18] to allow all users to create
these kind of ‘smart rules’, we argue that even our Solidity example is not simple enough,
so provide some constraints and suggestions for improvement.

3.3.2 A primer on Attribute Based Credentials3

Attribute Based Credentials (ABCs) are a cryptographic alternative to traditional creden-
tials like driver’s license and passports [4, 10, 11, 23, 53]. ABCs contain a set of at-
tributes, typically encoded as numbers, that a users can selectively reveal to the verifier.
Even when attributes are hidden, the verifier can still assess the validity of the credentials.

A typical ABC based scheme comprises of the following parties:

• Issuer

The issuer issues credentials to users. It ensures that the correct data are
stored in the credential. A typical credential scheme has multiple issuers.

• User

The user holds a set of credentials, obtained from one or more issuers. She
can disclose a (user defined) selection of attributes from any number of her
credentials to a verifier to obtain a service.

• Verifier

The verifier, sometimes called relying party or service provider, checks that
the credential is valid, the revealed attribute are as required and - when sup-
ported - if the credential is not revoked. Based on the outcome, it may provide
a service to the user.

To this paper there is a particular interest in the disclosures.
From a user perspective, we assume that the disclosure proofs in the ABCs support

selective disclosure, and have the unlinkability property. Selective disclosure means that
the user can select a subset of attributes in a credential that are meant to be shown, while
hiding the others. Unlinkability means that it is impossible to show that two disclosures
originate from the same credentials based on the disclosure proofs.

Conventionally, disclosures happens in an interactive two step protocol between the
service provider (the verifier) and the user.

0. The user starts the protocol by setting up a connection to the service provider.
1. The service provider tells the user which attributes, from which credentials are re-

quired and sends along a nonce.
2. The user creates a zero-knowledge proof that relies on the nonce for proper ver-

ification, proving ownership of the credentials and showing that the requested at-
tributes are contained in the credentials used in the proof.

The service provider verifies the proof, and can subsequently provide the service to
the user.

The service provider relies on the [41, p. 46] to prevent replay attacks. In a replay
attack, a previously used or previously created proof is presented again, and if successful
accepted by the verifier.

The security of accepting an ABC disclosure, therefore depends on the ability of the
verifier to enforce the freshness of the nonce.

3cf. [32]
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3.3.3 A primer on Distributed Ledger Technologies

A ‘ledger’ is traditionally an append-only (paper) ordered list of transactions. For exam-
ple, such as bankers may have used for bookkeeping in the time before computers.

A distributed ledger is a distributed data structure, where a set of bookkeeping nodes
collectively maintain a global state.

Distributed Ledger Technologies (DLT) are networks of computers that uses a (peer-
to-peer) consensus mechanism maintain a distributed digital ledger of transactions.

It may depend on the implementation what kind of transactions the consensus is
achieved on. For example, it can be about financial transactions [34] or correctness
of computations [58].

Many of these distributed systems are open for participation and auditable by anyone.
A typical public DLT system comprises of the following components:

• Node

The DLT system is built from nodes. All nodes are responsible for reaching
(and maintaining) consensus. The nodes communicate to each other, about
inputs received, the state of the network and the results from consensus.

• Ledger

The ledger is a append only data structure that is replicated across all the
nodes in the system. Appends only occur through the consensus mechanism.
A ledger of represents the state of a DLT. Sometimes this includes the input
and output related to every successful interaction with the system. Sometimes
it just contains a valid checksum to verify correctness of past events.

• User

Users interact with the network by sending it transactions. If the network sup-
ports user-identities, these usually are represented as pseudonymous public-
private key pair. Transactions are signed using this key pair; binding them to a
single user. Users often can also incentivise the network to prioritize the pro-
cessing of their transactions by including monetary rewards to the processing.

To this paper there is a particular interest in the DLTs that allow Smart Contracts to
be processed as transactions.

• Smart Contract

A user may include code in a transaction that must be stored in the network. In
the future any other user, or node can find this code an execute it. A user may
call an existing smart contract in the system with a certain input. Such a trans-
action will cause every node involved in the consensus to execute the code
with that input. A transaction to a smart contract is only included in the ledger
if consensus is achieved about the correctness of the execution. Sometimes
it is relevant that the execution takes place in public on the network. At other
times the smart contract only needs code to verify an input in order to accept
a transaction.

For a call to a smart contract to be accepted on a DLT, all the nodes should be able
to verify and audit transactions. That is: the input of a call will always result in the same
outputs, given a global state.
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In order to achieve this, all code for the verification of smart contracts is also included
in the ledger. Often the verification code of a contract is the actual execution code [3].

Contracts can therefore only consider information already in the ledger, or inputs to the
call for the verification. Dependencies on other sources of input will invalidate the integrity
of the ledger in an audit, or cause immediate disagreement between the (bookkeeping)
nodes about the verification.

3.3.4 Using ABCs on DLTs as access control.

Disclosures of Attribute Based Credentials can be used to make a decentralized access
control decision on the execution of a service.

Initially there are seem very little limitations. The cryptographic code can be ported to
run on many different DLTs as part of a smart contract. The user should be aware that
the disclosure is not only public, but also irremovable from the ledger. However, this is
precisely why the selective disclosure, and unlinkability properties are essential for this
application. These guarantee that the user cannot be identified beyond the anonymity set
of people that own credentials with these attributes - based on the disclosure proofs.

A smart contract however, cannot perfectly generate the functionality of a centralized
server when it verifies the disclosure: A call to the DLT cannot be interactive, as it has to
be replicated to all the nodes in the network. (and it is beyond impractical to have every
user set up a session with every verifying or auditing node.)

This means that the generation of the nonce used for the freshness in the ABC pro-
tocol, now also has to be replicated across the nodes in the DLT. And this poses a chal-
lenge. We can no longer just use sequence numbers in live networked sessions, nor can
we rely on a centralized source of randomness to make sure an attacker is unable to
prepare a disclosure.

Conventionally, we still cannot trust the users that call the smart contracts to have
any control over the nonces since these now can just look up the proofs from previous
disclosures on the ledger.

The problem we aim to solve with the next sections, is to find an way to implement a
version of a disclosure protocol that works for smart contracts, and still has the freshness
property.

We must include these disclosures to the transaction calls to the DLT, and must make
sure that it is recorded into the ledger in a manner that is verifiable and auditable.

This all must be practical for the users, and not impede on the availability of the
contract.

Furthermore, we will make a suggestion for the syntax to use to present such a pro-
tocol to the writers of a smart contract. The writers should have an interest in the security
that comes from proper freshness. The users of the smart contracts should also be able
to understand which attributes from which credentials are requested and what the pur-
pose of their use is [26].

3.3.5 Practical Properties of DLTs to create a Nonce

.
In this section we state four requirements to achieve freshness of disclosures on DLT

using nonces.
In an initial attempt to solve our problem, we could try to move just the verifying code

of the disclosure proof in the protocol to the DLT. Setting up the session and granting the
service would still happen outside of the DLT system. The advantage of such a situation
is that the relying party does not need to run the cryptographic code, and can rely on the
high integrity results recorded in the ledger.
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Instead of sending the nonce to the user, the relying party hard codes the nonce
and other details for the disclosure proof into a smart contract and uploads this contract
to some DLT system. The user receives an address to the location of this smart contract
on that DLT. She can extract the nonce and other details from the smart contract on the
ledger. This allows her to make a disclosure proof. The user then includes this disclosure
proof in a call to that smart contract. The DLT evaluates the call to the smart contract,
and if the proofs are valid, the transaction is recorded in the ledger. The relying party can
now periodically check the ledger, and once it finds a valid proof to their smart contract
has been recorded in the ledger, they will proceed and provide the service to the user.

The relying party must have a security model that allows this part of the interaction
to be public! Issues where another user accidentally or maliciously creates a disclosure
proof must be considered. Beyond that, there are no fundamental problems to move this
part of the interaction to a DLT system.

The same mechanism could also be used in services that fully run on the DLT and
have methods that are only ever called once. (Or in cases or where the outcome of such
an access control decision is idempotent.)

One would use a flag in the global state to represent the access control decision, and
append a method to the contract that only has the functionality to consume the proof and
set that flag.

Envisioned use might be in a smart contract helps to organize some public event, but
allows owners of specific attributes to *veto* the event. For example, the organization of
neighborhood party, that can be vetoed by anyone living in the street where the event will
take place.

The first challenge properly arises when we consider how to handle multiple disclo-
sures to the same method.

There exists a special case of this, in the case where a single user will only call a
particular method once. In that case, we demand that the disclosure proof is extended
with another zero-knowledge proof, containing an encrypted hash of the secret key of the
credential [19, 53]. This encrypted hash always needs to have the same value for a call
this method. If the DLT permits to store a list of these hashes, we can reject multiple
disclosures to the method from a single user, and by extension replay by others.

What we learn from this method of creating one time pseudonyms, is that any disclo-
sure must necessarily be bound to the particular method and contract that is being called
[19]. Otherwise one could re-use the disclosure proof for other contracts. A possible
language pattern for doing disclosures on a DLT should therefore include an automatic
reject of disclosure proofs that are not meant for that particular method in that specific
contract.

Aside from this special case of single individual calls to a contract, we have to find a
way of determining freshness when a smart contract may be called multiple times by a
single user.

We need notion of freshness in DLTs, and this needs to be replicable among all the
verifying nodes in the DLT. For example, by generation of a nonce - which may be non-
trivial on certain DLTs [43].

The nodes then need to determine (mostly/in majority) identical values for this nonce.
Once the transaction has been recorded in the network, anyone who audits the correct-
ness of transactions, i.e. the change of the global state, should deterministically be able
to reconstruct the same values.

At this point we do need to make an extra assumption on functionality of the DLT sys-
tems used. Many DLTs of course allow contracts to explicitly store (significant amounts
of) information on the ledger. For privacy or performance reasons, some might actually
not want have this feature [53]. To have a more universal notion of what a DLT can be,
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we will assume that there is no ability to persistently store data(structures) on the DLT
system.

This disables our option to start a contract with a given nonce, and update the value
for every new disclosure by hashing it with an accepted disclosure proof, and store this
nonce on the ledger. For performance this might even be a bad idea anyway. It creates
a bottleneck for throughput, when users have to compete among each other to get the
current value of the nonce.

Another way to introduce a notion of time and freshness, would be to install an oracle(-
smart contract) somewhere on the DLT that can publish freshly-generated random num-
bers on a regular interval. This however introduces a central party in the system. Such
central parties needs to be trusted by the writers of the smart contract, which goes
counter to our goals [18] The availability of the central party also becomes a single point
of failure for the methods that depend on disclosures.

DLTs that use a ‘Blockchain’ or hashchain as a data structure to represent the ledgers
may however already something similar to such an oracle already built in. The hash-value
of the last block in the chain often is a (pseudo) random number. It should only should
occur once, and needs to be out of the control of the users. Furthermore it represents an
epoch of time, which can be agreed upon across the network of nodes.

To make this more general, if a transaction is processed and included in the ledger, it
updates the global state of the DLT. The current global state should always be accessible
to the nodes on the network, and as such to the users of the smart contracts. It therefore
makes sense, to only accept disclosure proofs that are bound to the current represen-
tation of the global state. (This will only be useful if the epoch between changes of the
global states is long enough to construct the call. But more on that later.)

Now we still have to account for the replay of proofs within an epoch. If the DLT does
not support some system of user accounts, there is probably no mechanism to prevent
replication with the epoch. The smart contracts therefore should be written in such a way
that this can not cause ill effects.

Within the epoch have to make sure, that a call to a method will have the effects
intended by the disclosing user. A contract that offers a toggle switch for some flag
might functionally do precisely the opposite what the disclosing user had hoped for, if
some third party manages to replays that call. While the possibility of a call failing might
always exists, this now provides (limited) access to users who do not have the required
credentials. If the user had bound the decision ‘toggle to on’ to their disclosure proof, no
replay will grant agency with any unintended action.

Finally we have the option to bind disclosure proofs to the (pseudonymous) notions
of identity present in the DLTs. If an account - for example to pay transaction fees - is
bound to calls to the DLT: then no additional identifying information is leaked by also
binding a disclosure to this an account. The writer of the smart contract can rely on the
non-replayable nature of contract calls, to also prevent replay of disclosure proofs.

Summing up our requirements; in order to guarantee freshness for multiple disclo-
sures to a smart contract, we have to make sure that:

• disclosure proofs are bound to the change of global state (or equivalent proxy),
• disclosure proofs are bound to a specific contract and a specific method,
• all arguments in the call to that method must also be bound to the disclosure proof,

and
• if the privacy of users is not affected beyond the existing notion of (digital) identity

in the DLT system, disclosure proofs should be bound to these identities.
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3.3.6 Structures of Smart Contracts that preserve freshness

In this section we present two examples of smart contracts, written in Solidity [21]. The
first contract is an idempotent disclosure method that sets a flag whenever it first encoun-
ters a valid disclosure proof based on a hard coded nonce. The second contract offers
the ability to have access control through credentials for multiple disclosure proofs. It
achieves this through implementation of the requirements stated in the previous section.

The code for the cryptographic functions to verify the disclosure proofs is omitted,
since this is going to be specific for the ABC system used. In Ethereum [58] - the smart
contract platform used for these examples, there are no native cryptographic building
blocks to use in ABC systems. The cryptographical code therefore would have to be
run as a smart contract, which means that implementations would be extremely slow
and expensive. The same holds for the scheme of the attributes, if we wish to use their
values as in the execution of the method. A credential scheme specifies how a translation
is made between the attributes, and the mathematical objects used in the cryptography.

We use the modifier feature of functions in Solidity to create a syntax for the de-
velopers to specify which credentials are required [21]. A modifier is a function macro
that allows code to be executed before and after an actual function is called. This allows
credential wallets to parse the contracts, and prevents the methods to be executed if the
disclosures are not valid. The modifiers in Solidity unfortunately do not allow us to
enforce what arguments are passed through the function.

Idempotent disclosure The below code is a simple example that demonstrates the
functionality and required overhead for a disclosure in the simple case.

The Data required to create the disclosure proof can be queried using the Show_Nonce
and Show_Public methods. The ABC_crypto_verify function is omitted, but as-
sumed to handle the cryptograhic computations to verify the disclosure proofs for the
ABC system.

The value of _nonce is hardcoded by the writer of the smart contract, but - depending
on the security model - could also be some pseudo random value generated at the pub-
lication of the smart contract. For example the address of the contract on ledger. (Which
is available as address(this).)
Code

Listing 1: Solidity contract with single use access policy
pragma solidity ^0.4.25;

contract Idempotent_disclosure {

bool private contract_is_activated = false;

// hardcoded nonce.
bytes32 private _nonce = 0

xDEC0DED4C0FFEE4ABC4C0DE4ACEDFEED4DEADBEEF4ABBA4BA0BAB;
// hardcoded public values for credential
bytes[] private _public = [ /* ... */ ]

function Show_Nonce()
public
view
returns (bytes32) {

return _nonce;
}
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function Show_Public()
public
view
returns (bytes[]) {

return _public;
}

function Show_Is_Active()
public
view
returns (bool) {

return contract_is_activated;
}

function ConsumeCredential (uint256 proof)
private
returns (bool)
{

assert(ABC_crypto_verify(_public , proof , _nonce));
return true;

}

function CredentialTrigger (uint256 proof)
public
returns (bool)
{

if( contract_is_activated == false){
assert(ConsumeCredential(proof));
contract_is_activated = true;
return true;

}else{
return true; // returns true if contract already has been

activated
}

return false; // should be unreachable. something went wrong
}

modifier Do_not_run_if_not_activated () {
require(

contract_is_activated,
"Contract has not been activated, please provide the required

credential proof for the CredentialTrigger method."
);
_;

}

// The rest of the methods in this contract can use the modifier to
prevent execution if the contract has not been properly

activated.
// Other contracts can use the ‘Show_Is_Active‘ method to build

functionality based on the activation of this contract.

function SomeExampleMethod()
Do_not_run_if_not_activated
public
returns() {

/* some code */
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return;
}

}

Multiple disclosures Contract The following contract has two new features: First, it
offers the disclosure modifier, which moves verification outside of the methods used.
We use a pattern here, where the modified method take the exactly same inputs as the
modifier. This is to make sure all arguments of the method will be bound to the disclosure.
Unfortunately there is no way of enforcing this in Solidity.

Similar constructs to Solidity’s ‘modifier’, such as decorators in Python, do allow more
rigid control over the arguments used on methods that use ABCs.

The example method we use in this contract - the This_method_uses_ABC method,
works based on the fact that the parameters from the function call are in scope for the
decorator, so can be passed on. The writer of the contract still does need to manually
hard code the required credentials and/or attributes. (REQUIREMENTS in the code below)

Second, we provide a function for the generation of a nonce. We apply the ideas
presented in the previous section.

• The nonce therefore will contain the address of the smart contract (address(this)),
and the particular method (msg.sig) that is being called.

• The verification time is bound to the epoch in which the caller. All accepting nodes
will find the hash of the head of the blockchain (blockhash(block.number-1).

• The hash of the parameters of the function call are also explicitly bound to the value
of Nonce.

• Since it is impossible in Ethereum to call a contract without an account, the account
of the caller (msg.sender) has also been included in the nonce.

Code

Listing 2: nonces in Solidity for multiple Disclosures
pragma solidity ^0.4.25;
pragma experimental ABIEncoderV2;

contract ExampleDisclosure {

modifier disclosure (string[] parameters, uint256[] credentials,
uint256 proof, bytes32 nonce){
assert(true);
assert(ConsumeCredential(parameters,proof,credentials));
_;

}

function Nonce(bytes32 lasthash, address caller, address me, bytes8
method, string[] parameters)

public
pure
returns (bytes32) {

bytes memory constructed_nonce = (abi.encode(
abi.encode(lasthash),
abi.encode(caller),
abi.encode(me),
abi.encode(method)
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));

return keccak256(constructed_nonce) ^ keccak256(abi.encode(
parameters));

}

function ConsumeCredential (
string[] parameters,
uint256 proof,
uint256[] credentials
)
public
view
returns (bool)
{

bytes32 nonce = Nonce(blockhash(block.number-1), msg.sender
, address(this), msg.sig, parameters);

assert(VerifyProof(credentials, proof, nonce));
return true;

}

function VerifyProof(uint256[] credentials, uint256 proof, bytes32
nonce)
public
pure
returns (bool) {

return true;
}

uint256[] a;

function This_method_uses_ABC (string[] parameters, uint256
proof, bytes32 nonce)

public
disclosure(parameters, REQUIREMENTS , proof, nonce)
{

// does what you actually want
// only runs if the disclosure modifier completes
// has parameters available as strings
return ;

}

}

A user can find out what the last block number is by calling another contract. The rest
of the parameters for the nonce generation are available upon the discovery of the smart
contract. This allows us to generate the nonce on the client side, while the nodes in the
network will also come up with the same value during the mining of the current block.

Listing 3: Solidity contract to find the most recent blockhash value
contract LastHash {

function show()
public
view
returns (bytes32) {

return blockhash(block.number-1);
}
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}

3.3.7 Analysis

In the previous section we have seen two examples of how the protocol of ABC could be
adapted for use with the Ethereum blockchain. We show that the ideas presented in the
previous section are feasible in implementations.

In this section we address some of the particular problems that might arise when cod-
ing a similar smart contract for a different DLT. First we look at some practical differences
that arise from the speed at which the global state is updated within different DLTs. Finally
we address some practical concerns about the syntax to set attribute based credentials
as access control for methods in smart contracts. The goals in DECODE specify that
such smart rules should be usable by all users in the network.

Update Cycles The first issue relates to binding to ‘the current head of the blockchain’.
All DLTs have a data structure that represents the ledger. This ledger is then distributed
over the nodes as a shared ‘global state’.

The rate at which this global state is updated can vary a lot. Some DLTs update every
several minutes (bitcoin [34]), others a new block every couple of seconds (Ethereum
[58]), while some can process transactions so quickly the state-objects might update
multiple times per second (Chainspace [53]). This rate also affects the time it takes to
make sure that the transaction actually has been processed and recorded. (‘confirmation
time’)

The DLTs mentioned above also differ in what triggers the update of the state. In
most networks, like in Ethereum, the global state is updated continuous, and on a mostly
regular time interval. The objects that represent state in Chainspace however, are only
updated when they are consumed in a transaction.

These variations are important for the assessment whether our proposed method is
usable for a specific smart contract application on a specific DLT. The effects will be in
the user experience, but are also relevant for the security.

The faster the update cycle, the less opportunity an attacker has to benefit from replay
or other manipulation of the call to the contract. So the longer the epoch of the update
cycle is, the more one has to rely on the other properties, such as the binding of argu-
ments or a strong notion of accounts, to make sure disclosure proofs are fresh within the
epoch.

The faster the update cycle, the higher the likelihood will be that the call cannot be
completed within that cycle. This in particular becomes an issue in the DECODE appli-
cation, where a lot of the cryptographic operations are computed on embedded internet-
of-things devices or smartphones, which may take multiple seconds or even minutes to
prepare a single transaction. It is going to be a very inconvenient user experience if your
calls to the DLT are rejected too often, or require more powerful and expensive hardware.
In fact this affects the availability of your application on the DLT.

If the update of the global state happens on a regular basis, one could adapt the
method to compute a range of nonces for the last n blocks, one of which must be used in
the call. The value of n should remain as low as possible.

This problem might be more difficult to mitigate in the case where the local state of a
contract is represented by an object in the ledger which is only ever updated when the
related method is actually called. This has the advantage that slower devices may use
more time to prepare the call to the contract. It does, however force all the users of the
contract to compete in order to obtain the new state of the object and submit their call
before some other user makes the state change.
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This problem fortunately only arises when the contract gets popular. It then imposes
an additional constraint on the writer of the contract. They must consider what the impli-
cations may be of limited availability. It can also negatively impact the fairness among the
users in the network.

Composing Smart Contracts with ABCs The second consideration relates to the way
writers of smart contracts can utilize the features of ABCs in their methods. This subsec-
tion presumes that the main functionality is access control of the execution. The imple-
mentation and syntax of this should not require the writer to write or comprehend any
cryptographical code. This is because the goal in DECODE is to put users in control of
their data, and as such ‘any’ user should be able to create such an access policy [18].

The writer of smart contracts must have some simple functionality available to add to a
method that prevents execution without a valid disclosure. In our case this was a modifier
in Solidity. While the modifier in our example successfully hides the nonce-creation and
the other cryptographic functions, we still requires a lot of code to be specified and filled
in by the writers of the smart contract. For example, the parameters of the call to the
method still have to be passed into the modifier explicitly. It also remains easy to write
functions that have logic and inputs that are not bound to the nonce and thus disclosure
proof.

Our example code should therefore not be used as a template for the syntax and se-
mantics of creating such an access control policy. It fundamentally is not simple enough.

A better example can be set using Python’s decorators:

Listing 4: Decorators in Python

import DLT # some DLT specific library to get state.
import ABC # ABC crypto functions.

def requires(req_attributes):
def decorator(method):
def inner(proofs, *_):

# before method call:
if not ABC.verify(req_attributes, proofs, _):

raise Exception("Unable to verify proof. Call aborted.")
else:

plaintext_attributes = ABC.get_Attributes_from_proof(proofs,
DLT.state, req_attributes, _ )

# method call:
return method(plaintext_attributes, *_)

#after method call
DLT.ABCcleanup(proofs)

return inner

return decorator

@requires({{issuer : ’brp’, scheme : ’IRMA’, type : ’age’}})
def age_check(attributes):

if int(attributes.brp.age) > 18:
return True

return False
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The requires decorator in this case, not only allows us to use credentials as an
access policy, but also explicitly set controls on the arguments passed into the method.
In this case the disclosed attributes, on successful verification, even become available in
the (decorated) method as a dictionary of values.

When a function with this decorator is actually called, the method expects the dis-
closure proofs as arguments. (inner(proofs, *_)) The developer can now write the
method with the only constraint that the dictionary of attributes is expected to be the first
argument of the function.

Specifying the required credentials now also happens at a more readable and con-
venient place. The requires decorator only takes one argument; and that will be an
access control policy of the required credentials (and/or attributes) to run the method.
The @-notation of prepending a decorator before a method makes it fairly clear what is
going on in the code. This makes for convenient human- and machine readability of these
requirements from the smart contract source.

In a language that has purposefully been designed to support privacy friendly features
in smart contracts, these safeguards can be implemented at an even lower level. In
DECODE, Zenroom4 will likely contain this functionality and might use representations
inspired by [22] for ease of use to programmers and users of the contracts alike.

3.3.8 Conclusion

In this subsection we have investigated the possibility of using Attribute Based Credential
as a means of access control in the execution of Smart Contracts on Distributed Ledger
Technology systems.

The main challenge arises from the inability to have a interactive protocol with the
disclosing party, in order to guarantee the freshness of the disclosure proof. If these
proofs are accepted without the freshness property, they can be replayed. Since the
DLTs we consider are public systems by design, previous proofs will always be available
to attackers. This would make ABCs unusable as a means to specify and access policy.

We propose three features present in most DLTs to be able to generate a nonce value
that can be used as a proxy for the freshness.

• disclosure proofs are bound to the change of global state (or equivalent proxy),
• disclosure proofs are bound to a specific contract and a specific method,
• all arguments in the call to that method must also be bound to the disclosure proof,

and
• if the privacy of users is not affected beyond the existing notion of (digital) identity

in the DLT system, disclosure proofs should be bound to these identities.

We provide example code of implementing these requirements in a Solidity contract.
This argues for the feasibility of actually using ABCs as an access control mechanism on
(public) DLTs.

We argue that the practical differences between DLTs can still have a lot of effects on
the security and user experience. In particular for availability of the service or application
offered by the smart contract.

Furthermore, since this is in line with the DECODE ambition to allow all users to
create these kind of smart rules, we argue that even our Solidity example is not simple
enough. We take inspiration from Python decorators to suggest a way forward in allowing
users a syntax to specify access policies. These policies should be easily readable for
humans and machines.

4https://zenroom.dyne.org/
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3.4 Privacy-preserving petition

We consider the scenario where several authorities managing the country C wish to
issue some long-term credentials to its citizens to enable any third party to organize a
privacy-preserving petition. All citizens of C are allowed to participate, but should remain
anonymous and unlinkable across petitions. This application extends the work of Diaz et
al. [19] which does not consider threshold issuance of credentials.

Our petition system is based on the library contract and a simple smart contract called
“petition". There are three types of parties: a set of signing authorities representing C, a
petition initiator, and the citizens of C. The signing authorities create an instance of the
smart contract as described in [53]. As shown in Figure 2, the citizen provides a proof of
identity to the authorities (Ê). The authorities check the citizen’s identity, and issue a blind
and long-term signature on her private key k. This signature, which the citizen needs to
obtain only once, acts as her long term credential to sign any petition (Ë).
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]
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�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]
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�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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B. System evaluation
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latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above
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Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

  À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.
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Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been
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Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above
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Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

  À Ã Õ Œ œ – — “

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.
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Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]
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Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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latency vs t – ask n signatures (and n blind signatures) and
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Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.
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4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.
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Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]
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�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.
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to see why it is cool stuff; not many scheme have actually been
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Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}
Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes

Alberto: @George, Describe how the CoCoNut authorities
can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.
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V. EVALUATION

A. Primitives evaluation

The signature scheme has been implemented in python
using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
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Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
  ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
  ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.
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Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.
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4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
⇣

gk
1

⌘UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
⇣

gk
1

⌘UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the
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campaign

happens 
only once

Figure 2: The petition application.

Any third party can create a petition by creating a new instance of the petition contract
and become the “owner" of the petition. The petition instance specifies an identifier gs ∈
G1 unique to the petition where its representation is unlinkable to the other points of the
scheme5, as well as the verification key of the authorities issuing the credentials and any
application specific parameters (e.g., the options and current votes) (Ì). In order to sign a
petition, the citizens compute a value ζ = gks . They then adapt the zero-knowledge proof
of the algorithm of [53] to show that ζ is built from the same attribute k in the credential;
the petition contract checks the proofs and the credentials, and checks that the signature
is fresh by verifying that ζ is not part of a spent list. If all the checks pass, it adds the
citizens’ signatures to a list of records and adds ζ to the spent list to prevents a citizen
from signing the same petition multiple times (prevent double spending) (Í). Also, the
zero-knowledge proof ensures that ζ has been built from a signed private key k; this
means that the users correctly executed the callback to prove that they are citizens of C.
Security consideration. ’s blindness property prevents the authorities from learning the
citizen’s secret key, and misusing it to sign petitions on behalf of the citizen. Another
benefit is that it lets citizens sign petitions anonymously; citizens only have to go through
the issuance phase once, and can then re-use credentials multiple times while staying
anonymous and unlinkable across petitions. allows for distributed credentials issuance,
removing a central authority and preventing a single entity from creating arbitrary creden-
tials to sign petitions multiple times.

5This identifier can be generated through a hash function Fp → G1 : H̃(s) = gs | s ∈ Fp.
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4 Conclusion

In the first deliverable of the task; initial Decentralized models for data and identity man-
agement: Blockchain and ABC [33], we highlighted the relevant areas for research in the
domains of attribute based cryptography, identity management and distributed ledgers

In this document we have followed up on the Coconut credential system [53], which
was initially proposed in [33]. We provide an overview of the system and illustrate how it
is to be implemented in DECODE.

We also address the challenges set out in the previous deliverable regarding the use
of attribute based cryptography as access control.

We investigated Attribute Based Encryption as a means of access control of data in
distributed systems like DECODE. Because there are, to the best of our knowledge, no
schemes that satisfy all of the properties that we require for DECODE, and because the
best alternative scheme, namely the [45] scheme, has its own disadvantages that makes
it less than ideal for DECODE, we believe that the perfect scheme does not exist yet.

Attribute Based Credentials are shown be usable a means of access control on the
execution of smart contracts. We investigate the requirements of making ABCs a general
building block access control of execution in distributed ledger technology. This seems
universally achievable for most DLT technologies, yet the large variety among these sys-
tems still requires caution and awareness.

Finally we have a method for privacy-preserving petitions in DECODE. The application
we detail, builds upon the work of [19], and combines this with the Coconut credential
scheme.
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